- 709.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2006年中考数学应用题汇编及解析
一、代数应用题:
1、农科所向农民推荐渝江Ⅰ号和渝江Ⅱ号两种新型良种稻谷.在田间管理和土质相同的条件下,Ⅱ号稻谷单位面积的产量比Ⅰ号到谷低20%,但Ⅱ号稻谷的米质好,价格比Ⅰ号高.已知Ⅰ号稻谷国家的收购价是1.6元/千克.
(1) 当Ⅱ号稻谷的国家收购价是多少时,在田间管理、图纸和面积相同的两块田丽分别种植Ⅰ号、Ⅱ号稻谷的收益相同?
(2) 去年小王在土质、面积相同的两块田里分别种植Ⅰ号、Ⅱ号稻谷,且进行了相同的田间管理.收获后,小王把稻谷全部卖给国家.卖给国家时,Ⅱ号稻谷的国家收购价定为2.2元/千克,Ⅰ号稻谷国家的收购价未变,这样小王卖Ⅱ号稻谷比卖Ⅰ号稻谷多收入1040元,那么小王去年卖给国家的稻谷共有多少千克?
[解析] (1)由题意,得(元);
(2)设卖给国家的Ⅰ号稻谷千克,根据题意,得.
解得,(千克)
(千克)
答:(1)当Ⅱ号稻谷的国家收购价是2元时,种植Ⅰ号、Ⅱ号稻谷的收益相同;
(2)小王去年卖给国家的稻谷共为11700千克.
2、机械加工需要拥有进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量进行攻关.
(1) 甲车间通过技术革新后,加工一台大型机械设备润滑用油量下降到70千克,用油的重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?
(2) 乙车间通过技术革新后,不仅降低了润滑用油量,同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油量每减少1千克,用油量的重复利用率将增加1.6%. 这样乙车间加工一台大型机械设备的实际耗油量下降到12千克. 问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克?用油的重复利用率是多少?
[解析]
(1)由题意,得(千克)
(2)设乙车间加工一台大型机械设备润滑用油量为千克,
由题意,得
整理,得
解得:(舍去)
答:(1)技术革新后,甲车间加工一台大型机械设备的实际耗油量是28千克.
(2)技术革新后,乙车间加工一台大型机械设备润滑用油量是75千克?用油的重复利用率是84%.
3、某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:
员工
管理人员
普通工作人员
人员结构
总经理
部门经理
科研人员
销售人员
高级技工
中级技工
勤杂工
员工数(名)
1
3
2
3
24
1
每人月工资(元)
21000
8400
2025
2200
1800
1600
950
部门经理
小张
这个经理的介绍能反映该公司员工的月工资实际水平吗?
欢迎你来我们公司应聘!我公司员工的月平均工资是2500元,薪水是较高的.
请你根据上述内容,解答下列问题:
(1)该公司“高级技工”有 名;
(2)所有员工月工资的平均数为2500元,
中位数为 元,众数为 元;
(3)小张到这家公司应聘普通工作
人员.请你回答右图中小张的
问题,并指出用(2)中的哪个
数据向小张介绍员工的月工资
实际水平更合理些;
(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资(结果保留整数),并判断能否反映该公司员工的月工资实际水平.
[解析] (1)由表中数据知有16名;
(2)由表中数据知中位数为1700;众数为1600;
(3)这个经理的介绍不能反映该公司员工的月工资实际水平.
用1700元或1600元来介绍更合理些.
(说明:该问中只要写对其中一个数据或相应统计量(中位数或众数)也可以)
(4)≈1713(元).
能反映.
4、某旅游胜地欲开发一座景观山.从山的侧面进行堪测,迎面山坡线ABC由同一平面内的两段抛物线组成,其中AB所在的抛物线以A为顶点、开口向下,BC所在的抛物线以C为顶点、开口向上.以过山脚(点C)的水平线为x轴、过山顶(点A)的铅垂线为y轴建立平面直角坐标系如图(单位:百米).已知AB所在抛物线的解析式为,BC所在抛物线的解析式为,且已知.
(1)设是山坡线AB上任意一点,用y表示x,并求点B的坐标;
(2)从山顶开始、沿迎面山坡往山下铺设观景台阶.这种台阶每级的高度为20厘米
,长度因坡度的大小而定,但不得小于20厘米,每级台阶的两端点在坡面上(见图).
①分别求出前三级台阶的长度(精确到厘米);
②这种台阶不能一直铺到山脚,为什么?
(3)在山坡上的700米高度(点D)处恰好有一小块平地,可以用来建造索道站.索道的起点选择在山脚水平线上的点E处,(米).假设索道DE可近似地看成一段以E为顶点、开口向上的抛物线,解析式为.试求索道的最大悬空高度.
上山方向
长度
高度
[解析] (1)∵是山坡线AB上任意一点,
∴,, (…2分)
∴, (…3分)
∵,∴=4,∴ (…4分)
(2)在山坡线AB上,,
①令,得 ;令,得
∴第一级台阶的长度为(百米)(厘米) (…6分)
同理,令、,可得、
∴第二级台阶的长度为(百米)(厘米) (…7分)
第三级台阶的长度为(百米)(厘米) (…8分)
②取点,又取,则
∵
∴这种台阶不能从山顶一直铺到点B,从而就不能一直铺到山脚 (…10分)
(注:事实上这种台阶从山顶开始最多只能铺到700米高度,共500级.从100米高度到700米高度都不能铺设这种台阶.解题时取点具有开放性)
②另解:连接任意一段台阶的两端点P、Q,如图
∵这种台阶的长度不小于它的高度
∴
当其中有一级台阶的长大于它的高时,
(…9分)
在题设图中,作于H
则,又第一级台阶的长大于它的高
∴这种台阶不能从山顶一直铺到点B,从而就不能一直铺到山脚 (…10分)
上山方向
(3)
、、、
由图可知,只有当索道在BC上方时,索道的悬空高度才有可能取最大值(…11分)
索道在BC上方时,悬空高度
(…13分)
当时,
∴索道的最大悬空高度为米.
5、6
2
O
x(时)
y(米)
30
60
乙
甲
50
图11
有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.图11是反映所挖河渠长度y(米)与挖掘时间x(时)之间关系的部分图象.请解答下列问题:
(1)乙队开挖到30米时,用了_____小时.开挖6小时时,
甲队比乙队多挖了______米;
(2)请你求出:
①甲队在0≤x≤6的时段内,y与x之间的函数关系式;
②乙队在2≤x≤6的时段内,y与x之间的函数关系式;
③开挖几小时后,甲队所挖掘河渠的长度开始超过乙队?
(3)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?
[解析] (1)2;10;
(2)①设甲队在0≤x≤6的时段内y与x之间的函数关系式为y=k1x,
由图可知,函数图象过点(6,60),
∴6 k1=60,解得k1=10,
∴y =10x.
②设乙队在2≤x≤6的时段内y与x之间的函数关系式为y =k2x+b,
由图可知,函数图象过点(2,30)、(6,50),
∴ 解得
∴y =5x+20.
③由题意,得10x>5x+20,解得x>4.
所以,4小时后,甲队挖掘河渠的长度开始超过乙队.
(说明:通过观察图象并用方程来解决问题,正确的也给分)
(3)由图可知,甲队速度是:60÷6=10(米/时).
设甲队从开挖到完工所挖河渠的长度为z米,依题意,得
解得 =110.
答:甲队从开挖到完工所挖河渠的长度为110米.
6、利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7. 5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.
设每吨材料售价为x(元),该经销店的月利润为y(元).
(1)当每吨售价是240元时,计算此时的月销售量;
(2)求出y与x的二次函数关系式(不要求写出x的取值范围);
(3)请把(2)中的二次函数配方成的形式,并据此说明,该经销店要
获得最大月利润,售价应定为每吨多少元;
(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.
[解析] (1)=60(吨).
(2),
化简得: .
(3).
利达经销店要获得最大月利润,材料的售价应定为每吨210元.
(4)我认为,小静说的不对.
理由:方法一:当月利润最大时,x为210元,
而对于月销售额来说,
当x为160元时,月销售额W最大.
∴当x为210元时,月销售额W不是最大.
∴小静说的不对.
方法二:当月利润最大时,x为210元,此时,月销售额为17325元;
而当x为200元时,月销售额为18000元.∵17325<18000,
∴当月利润最大时,月销售额W不是最大.
∴小静说的不对.
(说明:如果举出其它反例,说理正确,也相应给分)
二、几何应用题:
8、图10—1是某学校存放学生自行车的车棚的示意图(尺寸如图所示),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图10—2是车棚顶部截面的示意图,所在圆的圆心为O.
O
B
A
·
图10—2
图10—1
A
B
2米
4米
车棚顶部是用一种帆布覆盖的,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留).
[解析]
连结OB,过点O作OE⊥AB,垂足为E,交于F,如图1. …………(1分)
·
图1
E
F
O
B
A
由垂径定理,可知: E是AB中点,F是中点,
∴EF是弓形高 .
∴AE=2,EF=2. …………(2分)
设半径为R米,则OE=(R-2)米.
在Rt△AOE中,由勾股定理,得 R 2=.
解得 R =4. ……………………………………………………………………(5分)
∵sin∠AOE=, ∴ ∠AOE=60°, ………………………………(6分)
∴∠AOB=120°. ∴ 的长为=. ………………………(7分)
∴帆布的面积为×60=160(平方米). …………………………………(8分)
(说明:本题也可以由相交弦定理求圆的半径的长.对于此种解法,请参照此评分标准相应给分)
9、图14-1至图14-7的正方形霓虹灯广告牌ABCD都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O.
如图14-1,有一个边长为6个单位长的正方形EFGH的对称中心也是点O,它以每秒1个单位长的速度由起始位置向外扩大(即点O不动,正方形EFGH经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;……),直到充满正方形ABCD,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.
另有一个边长为6个单位长的正方形MNPQ从如图14-1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD的内侧边缘按A→B→C→D→A移动(即正方形MNPQ从点P与点A重合位置开始,先向左平移,当点Q与点B重合时,再向上平移,当点M与点C重合时,再向右平移,当点N与点D重合时,再向下平移,到达起始位置后仍继续按上述方式移动).
正方形EFGH和正方形MNPQ从如图14-1的位置同时开始运动,设运动时间为x秒,它们的重叠部分面积为y个平方单位.
(1)请你在图14-2和图14-3中分别画出x为2秒、18秒时,正方形EFGH和正方形MNPQ的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;
(2)①如图14-4,当1≤x≤3.5时,求y与x的函数关系式;
②如图14-5,当3.5≤x≤7时,求y与x的函数关系式;
③如图14-6,当7≤x≤10.5时,求y与x的函数关系式;
④如图14-7,当10.5≤x≤13时,求y与x的函数关系式.
(3)对于正方形MNPQ在正方形ABCD各边上移动一周的过程,请你根据重叠部分面积y的变化情况,指出y取得最大值和最小值时,相对应的x的取值情况,并指出最大值和最小值分别是多少.(说明:问题(3)是额外加分题,加分幅度为1~4分)
图14-1
E
C
B
A(P)
D
F
G
H
M
Q
N
O
D
C
C
B
A
D
O
C
B
A
D
O
H
E
O
N
M
G
F
P
Q
A
B
图14-5
E
C
B
A
D
F
G
H
M
Q
N
O
P
图14-4
图14-3
图14-2
图14-6
E
C
B
A
D
F
G
H
M
Q
N
O
P
[解析]
(1)相应的图形如图2-1,2-2.
当x=2时,y=3;
图2-3
E
C
B
A
D
F
G
H
M
Q
N
O
P
K
S
T
图2-2
E
C
B
A
D
F
G
H
M
Q
N
O
P
图2-1
E
C
B
A
D
F
G
H
M
Q
N
O
P
当x=18时,y=18.
图2-4
E
C
B
A
D
F
G
H
M
Q
N
O
P
T
图2-5
E
C
B
A
D
F
G
H
M
Q
N
O
P
T
图2-6
E
C
B
A
D
F
G
H
K
Q
N
O
P
R
S
M
(2)①当1≤x≤3.5时,如图2-3,
延长MN交AD于K,设MN与HG交于S,MQ与FG交于T,则MK=6+x,SK=TQ=7-x,从而MS=MK-SK=2x-1,MT=MQ-TQ=6-(7-x)= x-1.
∴y=MT·MS=(x-1)(2x-1)=2x2-3x+1.
②当3.5≤x≤7时,如图2-4,设FG与MQ交于T,则
TQ=7-x,∴MT=MQ-TQ=6-(7-x)=x-1.
∴y=MN·MT=6(x-1)=6x-6.
③当7≤x≤10.5时,如图2-5,设FG与MQ交于T,则
TQ=x-7,∴MT=MQ-TQ=6-(x-7)=13-x.
∴y= MN·MT =6(13-x)=78-6x.
④当10.5≤x≤13时,如图2-6,设MN与EF交于S,NP交FG于R,延长NM交BC于K,则MK=14-x,SK=RP=x-7,
∴SM=SK-MK=2x-21,从而SN=MN-SM=27-2x,NR=NP-RP=13-x.
∴y=NR·SN=(13-x)(27-2x)=2x2-53x+351.
(说明:以上四种情形,所求得的y与x的函数关系式正确的,若不化简不扣分)
(3)对于正方形MNPQ,
图14-7
E
C
B
A
D
F
G
H
M
Q
N
O
P
①在AB边上移动时,当0≤x≤1及13≤x≤14时,y取得最小值0;
当x=7时,y取得最大值36.
②在BC边上移动时,当14≤x≤15及27≤x≤28时,y取得最小值0;
当x=21时,y取得最大值36.
③在CD边上移动时,当28≤x≤29及41≤x≤42时,y
取得最小值0;
当x=35时,y取得最大值36.
④在DA边上移动时,当42≤x≤43及55≤x≤56时,y取得最小值0;
当x=49时,y取得最大值36.