- 485.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2012中考数学压轴题及答案40例(2)
5.如图,在直角坐标系中,点为函数在第一象限内的图象上的任一点,点的坐标为,直线过且与轴平行,过作轴的平行线分别交轴,于,连结交轴于,直线交轴于.
(1)求证:点为线段的中点;
(2)求证:①四边形为平行四边形;
②平行四边形为菱形;
(3)除点外,直线与抛物线有无其它公共点?并说明理由.
(08江苏镇江28题解析)(1)法一:由题可知.
,,
. (1分)
,即为的中点. (2分)
法二:,,. (1分)
又轴,. (2分)
(2)①由(1)可知,,
,,
. (3分)
,
又,四边形为平行四边形. (4分)
②设,轴,则,则.
过作轴,垂足为,在中,
.
平行四边形为菱形. (6分)
(3)设直线为,由,得,代入得:
直线为. (7分)
设直线与抛物线的公共点为,代入直线关系式得:
,,解得.得公共点为.
所以直线与抛物线只有一个公共点. (8分)
6.如图13,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2 与x轴交于点C,直线y=-2x-1经过抛物线上一点B(-2,m),且与y轴、直线x=2分别交于点D、E.
(1)求m的值及该抛物线对应的函数关系式;
(2)求证:① CB=CE ;② D是BE的中点;
(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE,若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.
(1)∵ 点B(-2,m)在直线y=-2x-1上,
∴ m=-2×(-2)-1=3. ………………………………(2分)
∴ B(-2,3)
∵ 抛物线经过原点O和点A,对称轴为x=2,
∴ 点A的坐标为(4,0) .
设所求的抛物线对应函数关系式为y=a(x-0)(x-4). ……………………(3分)
将点B(-2,3)代入上式,得3=a(-2-0)(-2-4),∴ .
∴ 所求的抛物线对应的函数关系式为,即. (6分)
(2)①直线y=-2x-1与y轴、直线x=2的交点坐标分别为D(0,-1) E(2,-5).
过点B作BG∥x轴,与y轴交于F、直线x=2交于G,
A
B
C
O
D
E
x
y
x=2
G
F
H
则BG⊥直线x=2,BG=4.
在Rt△BGC中,BC=.
∵ CE=5,
∴ CB=CE=5. ……………………(9分)
②过点E作EH∥x轴,交y轴于H,
则点H的坐标为H(0,-5).
又点F、D的坐标为F(0,3)、D(0,-1),
∴ FD=DH=4,BF=EH=2,∠BFD=∠EHD=90°.
∴ △DFB≌△DHE (SAS),
∴ BD=DE.
即D是BE的中点. ………………………………(11分)
(3) 存在. ………………………………(12分)
由于PB=PE,∴ 点P在直线CD上,
∴ 符合条件的点P是直线CD与该抛物线的交点.
设直线CD对应的函数关系式为y=kx+b.
将D(0,-1) C(2,0)代入,得. 解得 .
∴ 直线CD对应的函数关系式为y=x-1.
∵ 动点P的坐标为(x,),
∴ x-1=. ………………………………(13分)
解得 ,. ∴ ,.
∴ 符合条件的点P的坐标为(,)或(,).…(14分)
(注:用其它方法求解参照以上标准给分.)
7.如图,在平面直角坐标系中,抛物线=-++经过A(0,-4)、B(,0)、 C(,0)三点,且-=5.
(1)求、的值;(4分)
(2)在抛物线上求一点D,使得四边形BDCE是以BC为对 角线的菱形;(3分)
(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.(3分)
解:
(解析)解:(1)解法一:
∵抛物线=-++经过点A(0,-4),
∴=-4 ……1分
又由题意可知,、是方程-++=0的两个根,
∴+=, =-=6 2分
由已知得(-)=25
又(-)=(+)-4=-24
∴ -24=25
解得=± 3分
当=时,抛物线与轴的交点在轴的正半轴上,不合题意,舍去.
∴=-. 4分
解法二:∵、是方程-++c=0的两个根,
即方程2-3+12=0的两个根.
∴=, 2分
∴-==5,
解得 =± 3分
(以下与解法一相同.)
(2)∵四边形BDCE是以BC为对角线的菱形,根据菱形的性质,点D必在抛物线的对称轴上, 5分
又∵=---4=-(+)+ 6分
∴抛物线的顶点(-,)即为所求的点D. 7分
(3)∵四边形BPOH是以OB为对角线的菱形,点B的坐标为(-6,0),
根据菱形的性质,点P必是直线=-3与
抛物线=---4的交点, 8分
∴当=-3时,=-×(-3)-×(-3)-4=4,
∴在抛物线上存在一点P(-3,4),使得四边形BPOH为菱形. 9分
四边形BPOH不能成为正方形,因为如果四边形BPOH为正方形,点P的坐标只能是(-3,3),但这一点不在抛物线上. 10分
8.已知:如图14,抛物线与轴交于点,点,与直线相交于点,点,直线与轴交于点.
(1)写出直线的解析式.
(2)求的面积.
(3)若点在线段上以每秒1个单位长度的速度从向运动(不与重合),同时,点在射线上以每秒2个单位长度的速度从向运动.设运动时间为秒,请写出的面积与的函数关系式,并求出点运动多少时间时,的面积最大,最大面积是多少?
(解析)解:(1)在中,令
,
, 1分
又点在上
的解析式为 2分
(2)由,得 4分
,
, 5分
6分
(3)过点作于点
7分
8分
由直线可得:
在中,,,则
, 9分
10分
11分
此抛物线开口向下,当时,
当点运动2秒时,的面积达到最大,最大为. 12分