- 364.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2016年江苏省宿迁市中考数学试卷
一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,有且仅有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)
1.(3分)﹣2的绝对值是( )
A.﹣2 B.﹣ C. D.2
2.(3分)下列四个几何体中,左视图为圆的几何体是( )
A. B. C. D.
3.(3分)地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为( )
A.3.84×103 B.3.84×104 C.3.84×105 D.3.84×106
4.(3分)下列计算正确的是( )
A.a2+a3=a5 B.a2•a3=a6 C.(a2)3=a5 D.a5÷a2=a3
5.(3分)如图,已知直线a、b被直线c所截.若a∥b,∠1=120°,则∠2的度数为( )
A.50° B.60° C.120° D.130°
6.(3分)一组数据5,4,2,5,6的中位数是( )
A.5 B.4 C.2 D.6
7.(3分)如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为( )
A.2 B. C. D.1
8.(3分)若二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为( )
A.x1=﹣3,x2=﹣1 B.x1=1,x2=3 C.x1=﹣1,x2=3 D.x1=﹣3,x2=1
二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)
9.(3分)因式分解:2a2﹣8= .
10.(3分)计算:= .
11.(3分)若两个相似三角形的面积比为1:4,则这两个相似三角形的周长比是 .
12.(3分)若一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是 .
13.(3分)某种油菜籽在相同条件下发芽试验的结果如表:
每批粒数n
100
300
400
600
1000
2000
3000
发芽的频数m
96
284
380
571
948
1902
2848
发芽的频率
0.960
0.947
0.950
0.952
0.948
0.951
0.949
那么这种油菜籽发芽的概率是 (结果精确到0.01).
14.(3分)如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为 .
15.(3分)如图,在平面直角坐标系中,一条直线与反比例函数y=(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为 .
16.(3分)如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为 .
三、解答题(本大题共10题,共72分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)
17.(6分)计算:2sin30°+3﹣1+(﹣1)0﹣.
18.(6分)解不等式组:.
19.(6分)某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:
各年级学生成绩统计表
优秀
良好
合格
不合格
七年级
a
20
24
8
八年级
29
13
13
5
九年级
24
b
14
7
根据以上信息解决下列问题:
(1)在统计表中,a的值为 ,b的值为 ;
(2)在扇形统计图中,八年级所对应的扇形圆心角为 度;
(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.
20.(6分)在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.
(1)若先从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m的值为 ;
(2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率.
21.(6分)如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.
22.(6分)如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A处观察灯塔P在北偏东60°方向,该海轮向正东方向航行8海里到达点B处,这时观察灯塔P恰好在北偏东45°方向.如果海轮继续向正东方向航行,会有触礁的危险吗?试说明理由.(参考数据:≈1.73)
23.(8分)如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.
(1)求证:AC是⊙O的切线;
(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.
24.(8分)某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.
(1)求y关于x的函数表达式;
(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.
25.(10分)已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.
(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;
(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.
①当点M与点C、D不重合时,连接CM,求∠CMD的度数;
②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.
26.(10分)如图,在平面直角坐标系xOy中,将二次函数y=x2﹣1的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.
(1)求N的函数表达式;
(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求PA2+PB2的最大值;
(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.
2016年江苏省宿迁市中考数学试卷
参考答案与试题解析
一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,有且仅有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)
1.(3分)(2016•宿迁)﹣2的绝对值是( )
A.﹣2 B.﹣ C. D.2
【解答】解:∵﹣2<0,
∴|﹣2|=﹣(﹣2)=2.
故选D.
2.(3分)(2016•宿迁)下列四个几何体中,左视图为圆的几何体是( )
A. B. C. D.
【解答】解:A、球的左视图是圆,故选项正确;
B、正方体的左视图是正方形,故选项错误;
C、圆锥的左视图是等腰三角形,故选项错误;
D、圆柱的左视图是长方形,故选项错误;
故选:A.
3.(3分)(2016•宿迁)地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为( )
A.3.84×103 B.3.84×104 C.3.84×105 D.3.84×106
【解答】解:384 000=3.84×105.
故选:C.
4.(3分)(2016•宿迁)下列计算正确的是( )
A.a2+a3=a5 B.a2•a3=a6 C.(a2)3=a5 D.a5÷a2=a3
【解答】解:A、不是同类项不能合并,故A错误;
B、同底数幂的乘法底数不变指数相加,故B错误;
C、幂的乘方底数不变指数相乘,故C错误;
D、同底数幂的除法底数不变指数相减,故D正确;
故选:D.
5.(3分)(2016•宿迁)如图,已知直线a、b被直线c所截.若a∥b,∠1=120°,则∠2的度数为( )
A.50° B.60° C.120° D.130°
【解答】解:如图,∠3=180°﹣∠1=180°﹣120°=60°,
∵a∥b,
∴∠2=∠3=60°.
故选:B.
6.(3分)(2016•宿迁)一组数据5,4,2,5,6的中位数是( )
A.5 B.4 C.2 D.6
【解答】解:将题目中数据按照从小到大排列是:
2,4,5,5,6,
故这组数据的中位数是5,
故选A.
7.(3分)(2016•宿迁)如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为( )
A.2 B. C. D.1
【解答】解:∵四边形ABCD为正方形,AB=2,过点B折叠纸片,使点A落在MN上的点F处,
∴FB=AB=2,BM=1,
则在Rt△BMF中,
FM=,
故选:B.
8.(3分)(2016•宿迁)若二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为( )
A.x1=﹣3,x2=﹣1 B.x1=1,x2=3 C.x1=﹣1,x2=3 D.x1=﹣3,x2=1
【解答】解:∵二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),
∴方程ax2﹣2ax+c=0一定有一个解为:x=﹣1,
∵抛物线的对称轴为:直线x=1,
∴二次函数y=ax2﹣2ax+c的图象与x轴的另一个交点为:(3,0),
∴方程ax2﹣2ax+c=0的解为:x1=﹣1,x2=3.
故选:C.
二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)
9.(3分)(2016•临夏州)因式分解:2a2﹣8= 2(a+2)(a﹣2) .
【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).
故答案为:2(a+2)(a﹣2).
10.(3分)(2016•宿迁)计算:= x .
【解答】解:===x.故答案为x.
11.(3分)(2016•宿迁)若两个相似三角形的面积比为1:4,则这两个相似三角形的周长比是 1:2 .
【解答】解:∵两个相似三角形的面积比为1:4,
∴这两个相似三角形的相似比为1:2,
∴这两个相似三角形的周长比是1:2,
故答案为:1:2.
12.(3分)(2016•宿迁)若一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是 k<1 .
【解答】解:∵一元二次方程x2﹣2x+k=0有两个不相等的实数根,
∴△=b2﹣4ac=4﹣4k>0,
解得:k<1,
则k的取值范围是:k<1.
故答案为:k<1.
13.(3分)(2016•宿迁)某种油菜籽在相同条件下发芽试验的结果如表:
每批粒数n
100
300
400
600
1000
2000
3000
发芽的频数m
96
284
380
571
948
1902
2848
发芽的频率
0.960
0.947
0.950
0.952
0.948
0.951
0.949
那么这种油菜籽发芽的概率是 0.95 (结果精确到0.01).
【解答】解:观察表格得到这种油菜籽发芽的频率稳定在0.95附近,
则这种油菜籽发芽的概率是0.95,
故答案为:0.95.
14.(3分)(2016•宿迁)如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为 2 .
【解答】解:如图,作CE⊥AB于E.
∵∠B=180°﹣∠A﹣∠ACB=180°﹣20°﹣130°=30°,
在Rt△BCE中,∵∠CEB=90°,∠B=30°,BC=2,
∴CE=BC=1,BE=CE=,
∵CE⊥BD,
∴DE=EB,
∴BD=2EB=2.
故答案为2.
15.(3分)(2016•宿迁)如图,在平面直角坐标系中,一条直线与反比例函数y=(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为 .
【解答】解:∵点A、B在反比例函数y=(x>0)的图象上,
设点B的坐标为(,m),
∵点B为线段AC的中点,且点C在x轴上,
∴点A的坐标为(,2m).
∵AD∥x轴、BE∥x轴,且点D、E在反比例函数y=(x>0)的图象上,
∴点D的坐标为(,2m),点E的坐标为(,m).
∴S梯形ABED=(+)×(2m﹣m)=.
故答案为:.
16.(3分)(2016•宿迁)如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为 4或2 .
【解答】解:①如图,当AB=AD时
满足△PBC是等腰三角形的点P有且只有3个,
△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),
则AB=AD=4.
②当AB<AD,且满足△PBC是等腰三角形的点P有且只有3个时,如图,
∵P2是AD的中点,
∴BP2==,
易证得BP1=BP2,
又∵BP1=BC,
∴=4
∴AB=2.
③当AB>AD时,直线AD上只有一个点P满足△PBC是等腰三角形.
故答案为:4或2.
三、解答题(本大题共10题,共72分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)
17.(6分)(2016•宿迁)计算:2sin30°+3﹣1+(﹣1)0﹣.
【解答】解:2sin30°+3﹣1+(﹣1)0﹣
=2×++1﹣2
=.
18.(6分)(2016•宿迁)解不等式组:.
【解答】解:
由①得,x>1,
由②得,x<2,
由①②可得,原不等式组的解集是:1<x<2.
19.(6分)(2016•宿迁)某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:
各年级学生成绩统计表
优秀
良好
合格
不合格
七年级
a
20
24
8
八年级
29
13
13
5
九年级
24
b
14
7
根据以上信息解决下列问题:
(1)在统计表中,a的值为 28 ,b的值为 15 ;
(2)在扇形统计图中,八年级所对应的扇形圆心角为 108 度;
(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.
【解答】解:(1)由题意和扇形统计图可得,
a=200×40%﹣20﹣24﹣8=80﹣20﹣24﹣8=28,
b=200×30%﹣24﹣14﹣7=60﹣24﹣14﹣7=15,
故答案为:28,15;
(2)由扇形统计图可得,
八年级所对应的扇形圆心角为:360°×(1﹣40%﹣30%)=360°×30%=108°,
故答案为:108;
(3)由题意可得,
2000×=200人,
即该校三个年级共有2000名学生参加考试,该校学生体育成绩不合格的有200人.
20.(6分)(2016•宿迁)在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.
(1)若先从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m的值为 2 ;
(2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率.
【解答】解:
(1)∵在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同,从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,
∴透明的袋子中装的都是黑球,
∴m=2,
故答案为:2;
(2)设红球分别为H1、H2,黑球分别为B1、B2,列表得:
第二球
第一球
H1
H2
B1
B2
H1
(H1,H2)
(H1,B1)
(H1,B2)
H2
(H2,H1)
(H2,B1)
(H2,B2)
B1
(B1,H1)
(B1,H2)
(B1,B2)
B2
(B2,H1)
(B2,H2)
(B2,B1)
总共有12种结果,每种结果的可能性相同,两次都摸到球颜色相同结果有4种,
所以两次摸到的球颜色相同的概率==.
21.(6分)(2016•宿迁)如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.
【解答】证明:∵ED∥BC,EF∥AC,
∴四边形EFCD是平行四边形,
∴DE=CF,
∵BD平分∠ABC,
∴∠EBD=∠DBC,
∵DE∥BC,
∴∠EDB=∠DBC,
∴∠EBD=∠EDB,
∴EB=ED,
∴EB=CF.
22.(6分)(2016•宿迁)如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A处观察灯塔P在北偏东60°方向,该海轮向正东方向航行8海里到达点B处,这时观察灯塔P恰好在北偏东45°方向.如果海轮继续向正东方向航行,会有触礁的危险吗?试说明理由.(参考数据:≈1.73)
【解答】解:没有触礁的危险.理由如下:
作PC⊥AB于C,如图,∠PAC=30°,∠PBC=45°,AB=8,
设BC=x,
在Rt△PBC中,∵∠PBC=45°,
∴△PBC为等腰直角三角形,
∴BC=BC=x,
在Rt△PAC中,∵tan∠PAC=,
∴AC=,即8+x=,解得x=4(+1)≈10.92,
即AC≈10.92,
∵10.92>10,
∴海轮继续向正东方向航行,没有触礁的危险.
23.(8分)(2016•宿迁)如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.
(1)求证:AC是⊙O的切线;
(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.
【解答】(1)证明:连接AO,延长AO交⊙O于点E,则AE为⊙O的直径,连接DE,如图所示:
∵∠ABC:∠ACB:∠ADB=1:2:3,∠ADB=∠ACB+∠CAD,
∴∠ABC=∠CAD,
∵AE为⊙O的直径,
∴∠ADE=90°,
∴∠EAD=90°﹣∠AED,
∵∠AED=∠ABD,
∴∠AED=∠ABC=∠CAD,
∴∠EAD=90°﹣∠CAD,
即∠EAD+∠CAD=90°,
∴EA⊥AC,
∴AC是⊙O的切线;
(2)解:∵BD是⊙O的直径,
∴∠BAD=90°,
∴∠ABC+∠ADB=90°,
∵∠ABC:∠ACB:∠ADB=1:2:3,
∴4∠ABC=90°,
∴∠ABC=22.5°,
由(1)知:∠ABC=∠CAD,
∴∠CAD=22.5°.
24.(8分)(2016•宿迁)某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.
(1)求y关于x的函数表达式;
(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.
【解答】解:(1)y=,其中(30<m≤100).
(2)由(1)可知当0<x≤30或m<x<100,函数值y都是随着x是增加而增加,
当30<x≤m时,y=﹣x2+150x=﹣(x﹣75)2+5625,
∵a=﹣1<0,
∴x≤75时,y随着x增加而增加,
∴为了让收取的总费用随着团队中人数的增加而增加,
∴30<m≤75.
25.(10分)(2016•宿迁)已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.
(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;
(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.
①当点M与点C、D不重合时,连接CM,求∠CMD的度数;
②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.
【解答】解:(1)如图1中,∵CA=CB,∠ACB=90°,
∴∠A=∠ABC=45°,
∵△CEF是由△CAD旋转逆时针α得到,α=90°,
∴CB与CE重合,
∴∠CBE=∠A=45°,
∴∠ABF=∠ABC+∠CBF=90°,
∵BG=AD=BF,
∴∠BGF=∠BFG=45°,
∴∠A=∠BGF=45°,
∴GF∥AC.
(2)①如图2中,∵CA=CE,CD=CF,
∴∠CAE=∠CEA,∠CDF=∠CFD,
∵∠ACD=∠ECF,
∴∠ACE=∠DCF,
∵2∠CAE+∠ACE=180°,2∠CDF+∠DCF=180°,
∴∠CAE=∠CDF,
∴A、D、M、C四点共圆,
∴∠CMF=∠CAD=45°,
∴∠CMD=180°﹣∠CMF=135°.
②如图3中,O是AC中点,连接OD、CM.
∵AD=DB,CA=CB,
∴CD⊥AB,
∴∠ADC=90°,
由①可知A、D、M、C四点共圆,
∴当α从90°变化到180°时,
点M在以AC为直径的⊙O上,运动路径是弧CD,
∵OA=OC,CD=DA,
∴DO⊥AC,
∴∠DOC=90°,
∴的长==.
∴当α从90°变化到180°时,点M运动的路径长为.
26.(10分)(2016•宿迁)如图,在平面直角坐标系xOy中,将二次函数y=x2﹣1的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.
(1)求N的函数表达式;
(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求PA2+PB2的最大值;
(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.
【解答】(1)解:二次函数y=x2﹣1的图象M沿x轴翻折得到函数的解析式为y=﹣x2+1,此时顶点坐标(0,1),
将此图象向右平移2个单位长度后再向上平移8个单位长度得到二次函数图象N的顶点为(2,9),
故N的函数表达式y=﹣(x﹣2)2+9=﹣x2+4x+5.
(2)∵A(﹣1,0),B(1,0),
∴PA2+PB2=(m+1)2+n2+(m﹣1)2+n2=2(m2+n2)+2=2•PO2+2,
∴当PO最大时PA2+PB2最大.如图,延长OC与⊙O交于点P,此时OP最大,
∴OP的最大值=OC+PC=+1,
∴PA2+PB2最大值=2(+1)2+2=38+4.
(3)M与N所围成封闭图形如图所示,
由图象可知,M与N所围成封闭图形内(包括边界)整点的个数为25个.