宁夏中考数学试卷 24页

  • 412.00 KB
  • 2021-05-10 发布

宁夏中考数学试卷

  • 24页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2017年宁夏中考数学试卷 ‎ ‎ 一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.‎ ‎1.(3分)下列各式计算正确的是(  )‎ A.4a﹣a=3 B.a6÷a2=a3 C.(﹣a3)2=a6 D.a3•a2=a6‎ ‎2.(3分)在平面直角坐标系中,点(3,﹣2)关于原点对称的点是(  )‎ A.(﹣3,2) B.(﹣3,﹣2) C.(3,﹣2) D.(3,2)‎ ‎3.(3分)学校国旗护卫队成员的身高分布如下表:‎ 身高/cm ‎159‎ ‎160‎ ‎161‎ ‎162‎ 人数 ‎7‎ ‎10‎ ‎9‎ ‎9‎ 则学校国旗护卫队成员的身高的众数和中位数分别是(  )‎ A.160和160 B.160和160.5 C.160和161 D.161和161‎ ‎4.(3分)某商品四天内每天每斤的进价与售价信息如图所示,则售出这种商品每斤利润最大的是(  )‎ A.第一天 B.第二天 C.第三天 D.第四天 ‎5.(3分)关于x的一元二次方程(a﹣1)x2+3x﹣2=0有实数根,则a的取值范围是(  )‎ A. B. C.且a≠1 D.且a≠1‎ ‎6.(3分)已知点 ‎ A(﹣1,1),B(1,1),C(2,4)在同一个函数图象上,这个函数图象可能是(  )‎ A. B. C. D.‎ ‎7.(3分)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是(  )‎ A.(a﹣b)2=a2﹣2ab+b2 B.a(a﹣b)=a2﹣ab C.(a﹣b)2=a2﹣b2 D.a2﹣b2=(a+b)(a﹣b)‎ ‎8.(3分)圆锥的底面半径r=3,高h=4,则圆锥的侧面积是(  )‎ A.12π B.15π C.24π D.30π ‎ ‎ 二、填空题(每题3分,满分24分,将答案填在答题纸上)‎ ‎9.(3分)分解因式:2a2﹣8=   .‎ ‎10.(3分)实数a在数轴上的位置如图,则|a﹣|=   .‎ ‎11.(3分)如图所示的圆形纸板被等分成10个扇形挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是   .‎ ‎12.(3分)某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为   元.‎ ‎13.(3分)如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点A'处.若∠1=∠2=50°,则∠A'为   .‎ ‎14.(3分)在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=DM.当AM⊥BM时,则BC的长为   .‎ ‎15.(3分)如图,点 A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为   .‎ ‎16.(3分)如图是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是   .‎ ‎ ‎ 三、解答题(本大题共6小题,共36分.解答应写出文字说明、证明过程或演算步骤.)‎ ‎17.(6分)解不等式组:.‎ ‎18.(6分)解方程:﹣=1.‎ ‎19.(6分)校园广播主持人培训班开展比赛活动,分为 A、B、C、D四个等级,对应的成绩分别是9分、8分、7分、6分,根据如图不完整的统计图解答下列问题:‎ ‎(1)补全下面两个统计图(不写过程);‎ ‎(2)求该班学生比赛的平均成绩;‎ ‎(3)现准备从等级A的4人(两男两女)中随机抽取两名主持人,请利用列表或画树状图的方法,求恰好抽到一男一女学生的概率?‎ ‎20.(6分)在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).‎ ‎(1)把△ABC平移后,其中点 A移到点A1(4,5),画出平移后得到的△A1B1C1;‎ ‎(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2 B2C2.‎ ‎21.(6分)在△ABC中,M是AC边上的一点,连接BM.将△ABC沿AC翻折,使点B落在点D处,当DM∥AB时,求证:四边形ABMD是菱形.‎ ‎22.(6分)某商店分两次购进 A、B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:‎ ‎ ‎ 购进数量(件)‎ 购进所需费用(元)‎ ‎ ‎ A B 第一次 ‎30‎ ‎40‎ ‎3800‎ 第二次 ‎40‎ ‎30‎ ‎3200‎ ‎(1)求A、B两种商品每件的进价分别是多少元?‎ ‎(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.‎ ‎ ‎ 四、解答题(本大题共4小题,共36分.解答应写出文字说明、证明过程或演算步骤.)‎ ‎23.(8分)将一副三角板Rt△ABD与Rt△ACB(其中∠ABD=90°,∠D=60°,∠ACB=90°,∠ABC=45°)如图摆放,Rt△ABD中∠D所对直角边与Rt△‎ ACB斜边恰好重合.以AB为直径的圆经过点C,且与AD交于点 E,分别连接EB,EC.‎ ‎(1)求证:EC平分∠AEB;‎ ‎(2)求的值.‎ ‎24.(8分)直线y=kx+b与反比例函数y=(x>0)的图象分别交于点 A(m,3)和点B(6,n),与坐标轴分别交于点C和点D.‎ ‎(1)求直线AB的解析式;‎ ‎(2)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.‎ ‎25.(10分)为确保广大居民家庭基本用水需求的同时鼓励家庭节约用水,对居民家庭每户每月用水量采用分档递增收费的方式,每户每月用水量不超过基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费.为对基本用水量进行决策,随机抽查2000户居民家庭每户每月用水量的数据,整理绘制出下面的统计表:‎ 用户每月用水量(m3)‎ ‎32及其以下 ‎33‎ ‎34‎ ‎35‎ ‎36‎ ‎37‎ ‎38‎ ‎39‎ ‎40‎ ‎41‎ ‎42‎ ‎43及其以上 户数(户)‎ ‎200‎ ‎160‎ ‎180‎ ‎220‎ ‎240‎ ‎210‎ ‎190‎ ‎100‎ ‎170‎ ‎120‎ ‎100‎ ‎110‎ ‎(1)为确保70%的居民家庭每户每月的基本用水量需求,那么每户每月的基本用水量最低应确定为多少立方米?‎ ‎(2)若将(1)中确定的基本用水量及其以内的部分按每立方米1.8元交费,超过基本用水量的部分按每立方米2.5元交费.设x表示每户每月用水量(单位:m3),y表示每户每月应交水费(单位:元),求y与x的函数关系式;‎ ‎(3)某户家庭每月交水费是80.9元,请按以上收费方式计算该家庭当月用水量是多少立方米?‎ ‎26.(10分)在边长为2的等边三角形ABC中,P是BC边上任意一点,过点 P分别作 PM⊥A B,PN⊥AC,M、N分别为垂足.‎ ‎(1)求证:不论点P在BC边的何处时都有PM+PN的长恰好等于三角形ABC一边上的高;‎ ‎(2)当BP的长为何值时,四边形AMPN的面积最大,并求出最大值.‎ ‎ ‎ ‎2017年宁夏中考数学试卷 参考答案与试题解析 ‎ ‎ 一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.‎ ‎1.(3分)下列各式计算正确的是(  )‎ A.4a﹣a=3 B.a6÷a2=a3 C.(﹣a3)2=a6 D.a3•a2=a6‎ ‎【解答】解:A、系数相加字母及指数不变,故A不符合题意;‎ B、同底数幂的除法底数不变指数相减,故B不符合题意;‎ C、积的乘方等于乘方的积,故C符合题意;‎ D、同底数幂的乘法底数不变指数相加,故D不符合题意;‎ 故选:C.‎ ‎ ‎ ‎2.(3分)在平面直角坐标系中,点(3,﹣2)关于原点对称的点是(  )‎ A.(﹣3,2) B.(﹣3,﹣2) C.(3,﹣2) D.(3,2)‎ ‎【解答】解:点(3,﹣2)关于原点对称的点的坐标是(﹣3,2),‎ 故选:A.‎ ‎ ‎ ‎3.(3分)学校国旗护卫队成员的身高分布如下表:‎ 身高/cm ‎159‎ ‎160‎ ‎161‎ ‎162‎ 人数 ‎7‎ ‎10‎ ‎9‎ ‎9‎ 则学校国旗护卫队成员的身高的众数和中位数分别是(  )‎ A.160和160 B.160和160.5 C.160和161 D.161和161‎ ‎【解答】解:数据160出现了10次,次数最多,众数是:160cm;‎ 排序后位于中间位置的是161cm,中位数是:161cm.‎ 故选:C.‎ ‎ ‎ ‎4.(3分)某商品四天内每天每斤的进价与售价信息如图所示,则售出这种商品每斤利润最大的是(  )‎ A.第一天 B.第二天 C.第三天 D.第四天 ‎【解答】解:由图象中的信息可知,‎ 利润=售价﹣进价,利润最大的天数是第二天,‎ 故选:B.‎ ‎ ‎ ‎5.(3分)关于x的一元二次方程(a﹣1)x2+3x﹣2=0有实数根,则a的取值范围是(  )‎ A. B. C.且a≠1 D.且a≠1‎ ‎【解答】解:根据题意得a≠1且△=32﹣4(a﹣1)•(﹣2)≥0,‎ 解得a≥﹣且a≠1.‎ 故选:D.‎ ‎ ‎ ‎6.(3分)已知点 A(﹣1,1),B(1,1),C(2,4)在同一个函数图象上,这个函数图象可能是(  )‎ A. B. C. D.‎ ‎【解答】解:∵A(﹣1,1),B(1,1),‎ ‎∴A与B关于y轴对称,故C,D错误;‎ ‎∵B(1,1),C(2,4),当x>0时,y随x的增大而增大,‎ 而B(1,1)在直线y=x上,C(2,4)不在直线y=x上,所以图象不会是直线,故A错误;故B正确.‎ 故选:B.‎ ‎ ‎ ‎7.(3分)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是(  )‎ A.(a﹣b)2=a2﹣2ab+b2 B.a(a﹣b)=a2﹣ab C.(a﹣b)2=a2﹣b2 D.a2﹣b2=(a+b)(a﹣b)‎ ‎【解答】解:第一个图形阴影部分的面积是a2﹣b2,‎ 第二个图形的面积是(a+b)(a﹣b).‎ 则a2﹣b2=(a+b)(a﹣b).‎ 故选:D.‎ ‎ ‎ ‎8.(3分)圆锥的底面半径r=3,高h=4,则圆锥的侧面积是(  )‎ A.12π B.15π C.24π D.30π ‎【解答】解:由勾股定理得:母线l===5,‎ ‎∴S侧=•2πr•l=πrl=π×3×5=15π.‎ 故选:B.‎ ‎ ‎ 二、填空题(每题3分,满分24分,将答案填在答题纸上)‎ ‎9.(3分)分解因式:2a2﹣8= 2(a+2)(a﹣2) .‎ ‎【解答】解:2a2﹣8‎ ‎=2(a2﹣4),‎ ‎=2(a+2)(a﹣2).‎ 故答案为:2(a+2)(a﹣2).‎ ‎ ‎ ‎10.(3分)实数a在数轴上的位置如图,则|a﹣|= ﹣a .‎ ‎【解答】解:∵a<0,‎ ‎∴a﹣<0,‎ 则原式=﹣a,‎ 故答案为:﹣a ‎ ‎ ‎11.(3分)如图所示的圆形纸板被等分成10个扇形挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是  .‎ ‎【解答】解:由题意可得:阴影部分有4个小扇形,总的有10个小扇形,‎ 故飞镖落在阴影区域的概率是:=.‎ 故答案为:.‎ ‎ ‎ ‎12.(3分)某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为 4 元.‎ ‎【解答】解:设该商品每件销售利润为x元,根据题意,得 ‎80+x=120×0.7,‎ 解得x=4.‎ 答:该商品每件销售利润为4元.‎ 故答案为4.‎ ‎ ‎ ‎13.(3分)如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点A'处.若∠1=∠2=50°,则∠A'为 105° .‎ ‎【解答】解:∵AD∥BC,‎ ‎∴∠ADB=∠DBG,‎ 由折叠可得∠ADB=∠BDG,‎ ‎∴∠DBG=∠BDG,‎ 又∵∠1=∠BDG+∠DBG=50°,‎ ‎∴∠ADB=∠BDG=25°,‎ 又∵∠2=50°,‎ ‎∴△ABD中,∠A=105°,‎ ‎∴∠A'=∠A=105°,‎ 故答案为:105°.‎ ‎ ‎ ‎14.(3分)在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=DM.当AM⊥BM时,则BC的长为 8 .‎ ‎【解答】解:∵AM⊥BM,点D是AB的中点,‎ ‎∴DM=AB=3,‎ ‎∵ME=DM,‎ ‎∴ME=1,‎ ‎∴DE=DM+ME=4,‎ ‎∵D是AB的中点,DE∥BC,‎ ‎∴BC=2DE=8,‎ 故答案为:8.‎ ‎ ‎ ‎15.(3分)如图,点 A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为 5 .‎ ‎【解答】解:如图,分别作AB、BC的中垂线,两直线的交点为O,‎ 以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,‎ 由图可知,⊙O还经过点D、E、F、G、H这5个格点,‎ 故答案为:5.‎ ‎ ‎ ‎16.(3分)如图是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是 22 .‎ ‎【解答】解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二层有1个小正方体,‎ 因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.‎ ‎∴这个几何体的表面积是5×6﹣8=22,‎ 故答案为22.‎ ‎ ‎ 三、解答题(本大题共6小题,共36分.解答应写出文字说明、证明过程或演算步骤.)‎ ‎17.(6分)解不等式组:.‎ ‎【解答】解:,‎ 由①得:x≤8,‎ 由②得:x>﹣3,‎ 则不等式组的解集为﹣3<x≤8.‎ ‎ ‎ ‎18.(6分)解方程:﹣=1.‎ ‎【解答】解:(x+3)2﹣4(x﹣3)=(x﹣3)(x+3)‎ x2+6x+9﹣4x+12=x2﹣9,‎ x=﹣15,‎ 检验:x=﹣15代入(x﹣3)(x+3)≠0,‎ ‎∴原分式方程的解为:x=﹣15,‎ ‎ ‎ ‎19.(6分)校园广播主持人培训班开展比赛活动,分为 A、B、C、D四个等级,对应的成绩分别是9分、8分、7分、6分,根据如图不完整的统计图解答下列问题:‎ ‎(1)补全下面两个统计图(不写过程);‎ ‎(2)求该班学生比赛的平均成绩;‎ ‎(3)现准备从等级A的4人(两男两女)中随机抽取两名主持人,请利用列表或画树状图的方法,求恰好抽到一男一女学生的概率?‎ ‎【解答】解:(1)4÷10%=40(人),‎ C等级的人数40﹣4﹣16﹣8=12(人),‎ C等级的人数所占的百分比12÷40=30%.‎ 两个统计图补充如下:‎ ‎(2)9×10%+8×40%+7×30%+6×20%=7.4(分);‎ ‎(3)列表为:‎ 男1‎ 男2‎ 女1‎ 女2‎ 男1‎ ‎﹣﹣‎ 男2男1‎ 女1男1‎ 女2男1‎ 男2‎ 男1男2‎ ‎﹣﹣‎ 女1男2‎ 女2男2‎ 女1‎ 男1女1‎ 男2女1‎ ‎﹣﹣‎ 女2女1‎ 女2‎ 男1女2‎ 男2女2‎ 女1女2‎ ‎﹣﹣‎ 由上表可知,从4名学生中任意选取2名学生共有12种等可能结果,其中恰好选到1名男生和1名女生的结果有8种,‎ 所以恰好选到1名男生和1名女生的概率P==.‎ ‎ ‎ ‎20.(6分)在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).‎ ‎(1)把△ABC平移后,其中点 A移到点A1(4,5),画出平移后得到的△A1B1C1;‎ ‎(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2 B2C2.‎ ‎【解答】解:(1)如图,△A1B1C1即为所求;‎ ‎(2)如图,△A2 B2C2即为所求.‎ ‎ ‎ ‎21.(6分)在△ABC中,M是AC边上的一点,连接BM.将△ABC沿AC翻折,使点B落在点D处,当DM∥AB时,求证:四边形ABMD是菱形.‎ ‎【解答】证明:∵AB∥DM,‎ ‎∴∠BAM=∠AMD,‎ ‎∵△ADC是由△ABC翻折得到,‎ ‎∴∠CAB=∠CAD,AB=AD,BM=DM,‎ ‎∴∠DAM=∠AMD,‎ ‎∴DA=DM=AB=BM,‎ ‎∴四边形ABMD是菱形.‎ ‎ ‎ ‎22.(6分)某商店分两次购进 ‎ A、B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:‎ ‎ ‎ 购进数量(件)‎ 购进所需费用(元)‎ ‎ ‎ A B 第一次 ‎30‎ ‎40‎ ‎3800‎ 第二次 ‎40‎ ‎30‎ ‎3200‎ ‎(1)求A、B两种商品每件的进价分别是多少元?‎ ‎(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.‎ ‎【解答】解:(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,‎ 根据题意得:,‎ 解得:.‎ 答:A种商品每件的进价为20元,B种商品每件的进价为80元.‎ ‎(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000﹣m)件,‎ 根据题意得:w=(30﹣20)(1000﹣m)+(100﹣80)m=10m+10000.‎ ‎∵A种商品的数量不少于B种商品数量的4倍,‎ ‎∴1000﹣m≥4m,‎ 解得:m≤200.‎ ‎∵在w=10m+10000中,k=10>0,‎ ‎∴w的值随m的增大而增大,‎ ‎∴当m=200时,w取最大值,最大值为10×200+10000=12000,‎ ‎∴当购进A种商品800件、B种商品200件时,销售利润最大,最大利润为12000元.‎ ‎ ‎ 四、解答题(本大题共4小题,共36分.解答应写出文字说明、证明过程或演算步骤.)‎ ‎23.(8分)将一副三角板Rt△ABD与Rt△ACB(其中∠ABD=90°,∠D=60°,∠‎ ACB=90°,∠ABC=45°)如图摆放,Rt△ABD中∠D所对直角边与Rt△ACB斜边恰好重合.以AB为直径的圆经过点C,且与AD交于点 E,分别连接EB,EC.‎ ‎(1)求证:EC平分∠AEB;‎ ‎(2)求的值.‎ ‎【解答】(1)证明:∵Rt△ACB中,∠ACB=90°,∠ABC=45°,‎ ‎∴∠BAC=∠ABC=45°,‎ ‎∵∠AEC=∠ABC,∠BEC=∠BAC,‎ ‎∴∠AEC=∠BEC,‎ 即EC平分∠AEB;‎ ‎(2)解:如图,设AB与CE交于点M.‎ ‎∵EC平分∠AEB,‎ ‎∴=.‎ 在Rt△ABD中,∠ABD=90°,∠D=60°,‎ ‎∴∠BAD=30°,‎ ‎∵以AB为直径的圆经过点E,‎ ‎∴∠AEB=90°,‎ ‎∴tan∠BAE==,‎ ‎∴AE=BE,‎ ‎∴==.‎ 作AF⊥CE于F,BG⊥CE于G.‎ 在△AFM与△BGM中,‎ ‎∵∠AFM=∠BGM=90°,∠AMF=∠BMG,‎ ‎∴△AFM∽△BGM,‎ ‎∴==,‎ ‎∴===.‎ 方法2、如图1,‎ 在Rt△ABD中,∠ABD=90°,∠D=60°,‎ ‎∴∠BAD=30°,‎ ‎∵以AB为直径的圆经过点E,‎ ‎∴∠AEB=90°,‎ ‎∴tan∠BAE==,‎ ‎∴AE=BE,‎ 过点C作CP⊥AE于P,过点C作CQ⊥EB交延长线于Q,‎ 由(1)知,EC是∠AEB的角平分线,‎ ‎∴CP=CQ,‎ ‎∴===.‎ ‎ ‎ ‎24.(8分)直线y=kx+b与反比例函数y=(x>0)的图象分别交于点 A(m,3)和点B(6,n),与坐标轴分别交于点C和点D.‎ ‎(1)求直线AB的解析式;‎ ‎(2)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.‎ ‎【解答】解:(1)∵y=kx+b与反比例函数y=(x>0)的图象分别交于点 A(m,3)和点B(6,n),‎ ‎∴m=2,n=1,‎ ‎∴A(2,3),B(6,1),‎ 则有,‎ 解得,‎ ‎∴直线AB的解析式为y=﹣x+4‎ ‎(2)如图①当PA⊥OD时,∵PA∥OC,‎ ‎∴△ADP∽△CDO,‎ 此时p(2,0).‎ ‎②当AP′⊥CD时,易知△P′DA∽△CDO,‎ ‎∵直线AB的解析式为y=﹣x+4,‎ ‎∴直线P′A的解析式为y=2x﹣1,‎ 令y=0,解得x=,‎ ‎∴P′(,0),‎ 综上所述,满足条件的点P坐标为(2,0)或(,0).‎ ‎ ‎ ‎25.(10分)为确保广大居民家庭基本用水需求的同时鼓励家庭节约用水,对居民家庭每户每月用水量采用分档递增收费的方式,每户每月用水量不超过基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费.为对基本用水量进行决策,随机抽查2000户居民家庭每户每月用水量的数据,整理绘制出下面的统计表:‎ 用户每月用水量(m3)‎ ‎32及其以下 ‎33‎ ‎34‎ ‎35‎ ‎36‎ ‎37‎ ‎38‎ ‎39‎ ‎40‎ ‎41‎ ‎42‎ ‎43及其以上 户数(户)‎ ‎200‎ ‎160‎ ‎180‎ ‎220‎ ‎240‎ ‎210‎ ‎190‎ ‎100‎ ‎170‎ ‎120‎ ‎100‎ ‎110‎ ‎(1)为确保70%的居民家庭每户每月的基本用水量需求,那么每户每月的基本用水量最低应确定为多少立方米?‎ ‎(2)若将(1)中确定的基本用水量及其以内的部分按每立方米1.8元交费,超过基本用水量的部分按每立方米2.5元交费.设x表示每户每月用水量(单位:m3),y表示每户每月应交水费(单位:元),求y与x的函数关系式;‎ ‎(3)某户家庭每月交水费是80.9元,请按以上收费方式计算该家庭当月用水量是多少立方米?‎ ‎【解答】解:(1)200+160+180+220+240+210+190=1400(户),‎ ‎2000×70%=1400(户),‎ ‎∴基本用水量最低应确定为多38m3.‎ 答:为确保70%的居民家庭每户每月的基本用水量需求,那么每户每月的基本用水量最低应确定为38立方米.‎ ‎(2)设x表示每户每月用水量(单位:m3‎ ‎),y表示每户每月应交水费(单位:元),‎ 当0≤x≤38时,y=1.8x;‎ 当x>38时,y=1.8×38+2.5(x﹣38)=2.5x﹣26.6.‎ 综上所述:y与x的函数关系式为y=.‎ ‎(3)∵1.8×38=68.4(元),68.4<80.9,‎ ‎∴该家庭当月用水量超出38立方米.‎ 当y=2.5x﹣26.6=80.9时,x=43.‎ 答:该家庭当月用水量是43立方米.‎ ‎ ‎ ‎26.(10分)在边长为2的等边三角形ABC中,P是BC边上任意一点,过点 P分别作 PM⊥A B,PN⊥AC,M、N分别为垂足.‎ ‎(1)求证:不论点P在BC边的何处时都有PM+PN的长恰好等于三角形ABC一边上的高;‎ ‎(2)当BP的长为何值时,四边形AMPN的面积最大,并求出最大值.‎ ‎【解答】解:(1)连接AP,过C作CD⊥AB于D,‎ ‎∵△ABC是等边三角形,‎ ‎∴AB=AC,‎ ‎∵S△ABC=S△ABP+S△ACP,‎ ‎∴AB•CD=AB•PM+AC•PN,‎ ‎∴PM+PN=CD,‎ 即不论点P在BC边的何处时都有PM+PN的长恰好等于三角形ABC一边上的高;‎ ‎(2)设BP=x,则CP=2﹣x,‎ ‎∵△ABC是等边三角形,‎ ‎∴∠B=∠C=60°,‎ ‎∵PM⊥AB,PN⊥AC,‎ ‎∴BM=x,PM=x,CN=(2﹣x),PN=(2﹣x),‎ ‎∴四边形AMPN的面积=×(2﹣x)•x+[2﹣(2﹣x)]•(2﹣x)=﹣x2+x+=﹣(x﹣1)2+,‎ ‎∴当BP=1时,四边形AMPN的面积最大,最大值是.‎ ‎ ‎