• 163.50 KB
  • 2021-05-10 发布

中考一轮复习之三角形专项练习无答案

  • 7页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
三角形 ‎1. (2016内江)问题引入: (1)如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC=________(用α表示);如图②,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,则∠BOC=_______(用α表示) 拓展研究: (2)如图③,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,请猜想∠BOC=_______(用α表示),并说明理由. 类比研究: (3)BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,请猜想∠BOC=________________. ‎ ‎2. (2016六盘水)如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠An-1AnBn-1的度数为(  )‎ ‎3.(2016六盘水)我们知道:“两边及其中一边的对角分别相等的两个三角形不一定全等”.但是,小亮发现:当这两个三角形都是锐角三角形时,它们会全等,除小亮的发现之外,当这两个三角形都是__________时,它们也会全等;当这两个三角形其中一个三角形是锐角三角形,另一个是________时,它们一定不全等.‎ ‎4.(2016贵阳)已知△ABC,∠BAC=45°,AB=8,要使满足条件的△ABC唯一确定,那么BC边长度x的取值范围为_________________.‎ ‎5.(2016丹东)如图,在平面直角坐标系中,A、B两点分别在x轴、y轴上,OA=3,OB=4,连接AB.点P在平面内,若以点P、A、B为顶点的三角形与△AOB全等(点P与点O不重合),则点P的坐标为 ‎_________________.‎ ‎6.(2016湖州) 如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是(  )‎ A.8 B.6 C.4 D.2‎ ‎7. (2016河北)如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有(  )‎ A.1个 B.2个 C.3个 D.3个以上 ‎8.(2016黔东南州)如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE=(  )‎ A. B. C.2 D. ‎ ‎9.(2016武汉).平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是(  )‎ A.5 B.6 C.7 D.8‎ ‎10. (2016宿迁)如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为____________.‎ ‎11.(2016淄博)如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC于点F. (1)求证:AE=AF; (2)求证:BE=(AB+AC).‎ ‎12.(2016淄博)如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为(  ) ‎ ‎13.(2016泰安)(1)已知:△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A=60°(如图①).求证:EB=AD; (2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其它条件不变(如图②),(1)的结论是否成立,并说明理由; (3)若将(1)中的“若∠A=60°”改为“若∠A=90°”,其它条件不变,则的值是多少?‎ ‎14. (2016•北京)在等边△ABC中, (1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数; (2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM. ①依题意将图2补全; ②‎ 小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法: 想法1:要证明PA=PM,只需证△APM是等边三角形; 想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM; 想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK… 请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).‎ ‎15. (2016鄂州)如图,AB=6,O是AB的中点,直线l经过点O,∠1=120°,P是直线l上一点,当△APB为直角三角形时,AP=__________.‎ ‎ ‎ ‎ (15题图) (16题图) (17题图)‎ ‎16. (2015德州)如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下列四个结论: ①OA=OD; ②AD⊥EF; ③当∠A=90°时,四边形AEDF是正方形; ④AE2+DF2=AF2+DE2. 其中正确的是_______________.‎ ‎17.(2015连云港)在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是______________. ‎ ‎18.(2015荆门)如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论: ①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB平分∠AMC, 其中结论正确的有___________个。‎ ‎19.(2015河北)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图: 以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1; 再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2; 再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;… 这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=_________.‎ ‎20.(2015武汉)如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是_____________.‎ ‎21.(2016资阳)如图,透明的圆柱形容器(容器厚度忽略 不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是___________.‎ ‎22.(2015重庆)如图1,在△ABC中,∠ACB=90°,∠BAC=60°,点E是∠BAC角平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF. (1)如图1,若点H是AC的中点,AC=2,求AB,BD的长; (2)如图1,求证:HF=EF; (3)如图2,连接CF,CE.猜想:△CEF是否是等边三角形?若是,请证明;若不是,说明理由.‎