- 374.50 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
中考压轴题分类专题一——抛物线中的三角形面积
基本题型:
为与抛物线相交,点在抛物线上。
(1)已知,求点的坐标:
利用斜弦长公式求出,进而求出边上的高。设点为,利用点到直线的距离公式列出点到直线的距离,而,则可求得点的坐标。
(2)如图,若点在上方的抛物线上时,求的最大值:
利用斜弦长公式求出。作∥且与抛物线相切,则切点为所求。
设为代入抛物线,因为它们只有一个交点。所以有:,则可求出,利用平行线之间的距离公式求出与的距离(即边上的高),进而可求得的最大值。
所需知识点:
(1)点到直线的距离公式:
已知点与直线,点P到直线的距离记作,则有。
(2)弦长公式
抛物线与轴两交点之间的距离:若抛物线与轴两交点为,由于、是方程的两个根,故
。
(3)斜弦长公式:
一次函数的图像与二次函数的图像两个交点,由于、是方程的两个根,
(4)两平行线之间的距离公式:
已知两平行线,与,与之间的距离记作,则有。
典型例题:
例一(08深圳):如图9,在平面直角坐标系中,二次函数的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),OB=OC ,tan∠ACO=.
(1)求这个二次函数的表达式.
(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.
(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.
(4)如图10,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.
解:(1)二次函数的表达式为:;(2)、(3)略。
(4)易得G(2,-3),直线AG为.
例二(09深圳):已知,的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直接坐标系中,使其斜边AB与轴重合(其中),直角顶点C落在轴正半轴上(如图11)。
(1)求线段OA、OB的长和过点A、B、C的抛物线的解析式。(4分)
(2)如图12,点D的坐标为(2,0),点是该抛物线上的一个动点(其中),连接DP交BC于点E。
①当是等腰三角形时,直接写出此时点E的坐标。(3分)
②又连接CD、CP(如图13),是否有最大面积?若有,求出的最大面积和此时点P的坐标;若没有,请说明理由。(3分)
图11 图12 图13
例三(广大附中09一模):已知抛物线y=-x2+mx-m+2.
(1)若抛物线与x轴的两个交点A、B分别在原点的两侧,并且AB=,试求m的值;
N
M
C
x
y
O
(2)设C为抛物线与y轴的交点,若抛物线上存在关于原点对称的两点M、N,并且 △MNC的面积等于27,试求m的值.
例四(09茂名模拟):如图,矩形OABC的长OA=,AB=1,将△AOC沿AC翻折得△APC。
(1)填空:∠PCB=___度,P点坐标为_____
(2)若P、A两点在抛物线上,求抛物线的解析式,并判断点C是否在这抛物线上。
O
A
B
C
P
D
x
y
(3)在(2)中的抛物线CP段上(不含C、P点)是否存在一点M,使得四边形MCAP的面积最大?若存在,求这个最大值和M点坐标,若不存在,说明理由。
同步训练:
A
O
F
B
x
y
C
E
图(16)
1、如图(16),抛物线的图象与轴交于两点,与轴交于点,其中点的坐标为;直线与抛物线交于点,与轴交于点,且.
(1)用表示点的坐标;
(2)求实数的取值范围;
(3)请问的面积是否有最大值?若有,求出这个最大值;若没有,请说明理由.
2、(09安徽芜湖)如图,在平面直角坐标系中放置一直角三角板,其顶点为,,,将此三角板绕原点顺时针旋转,得到.
(1)如图,一抛物线经过点,求该抛物线解析式;
(2)设点是在第一象限内抛物线上一动点,求使四边形的面积达到最大时点的坐标及面积的最大值.
3
2
1
1
2
A
O
第24题图
B
x
y
3、(09甘肃定西)如图14(1),抛物线与x轴交于A、B两点,与y轴交于点C(0,).[图14(2)、图14(3)为解答备用图]
(1) ,点A的坐标为 ,点B的坐标为 ;
(2)设抛物线的顶点为M,求四边形ABMC的面积;
(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由;
(4)在抛物线上求点Q,使△BCQ是以BC为直角边的直角三角形.
图14(1) 图14(2) 图14(3)
4、(09肇庆)已知一元二次方程的一根为 2.
(1)求关于的关系式;
(2)求证:抛物线与轴有两个交点;
(3)设抛物线的顶点为 M,且与 x 轴相交于A(,0)、B(,0)两点,求使△AMB 面积最小时的抛物线的解析式.
5、(2009年山东临沂市)如图,抛物线经过三点.
(1)求出抛物线的解析式;
(2)P是抛物线上一动点,过P作轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
(3)在直线AC上方的抛物线上有一点D,使得的面积最大,求出点D的坐标.
O
x
y
A
B
C
4
1
(第26题图)
x
y
B
F
O
A
C
P
x=1
(第25题)
6、(09永州)如图,在平面直角坐标系中,点的坐标分别为点在轴上.已知某二次函数的图象经过、、三点,且它的对称轴为直线点为直线下方的二次函数图象上的一个动点(点与、不重合),过点作轴的平行线交于点
(1)求该二次函数的解析式;
(2)若设点的横坐标为用含的代数式表示线段的长.
(3)求面积的最大值,并求此时点的坐标.