- 4.86 MB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2012年全国中考数学试题分类解析汇编
专题55:动态型问题
一、选择题
1. (2012安徽省4分)如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线,与⊙O过A点的切线交于点B,且∠APB=60°,设OP= x,则△PAB的面积y关于x的函数图像大致是【 】
【答案】D。
【考点】动点问题的函数图象,锐角三角函数定义,特殊角的三角函数值。
【分析】利用AB与⊙O相切,△BAP是直角三角形,把直角三角形的直角边表示出来,从而用x表示出三角形的面积,根据函数解析式确定函数的图象:
∵AB与⊙O相切,∴∠BAP=90°,
∵OP=x,AP=2-x,∠BPA=60°,∴AB=,
∴△APB的面积,(0≤x≤2)。
∴△PAB的面积y关于x的函数图像是经过(2,0)的抛物线在0≤x≤2的部分。故选D。
2. (2012浙江嘉兴、舟山4分)如图,正方形ABCD的边长为a,动点P从点A出发,沿折线A→B→D→C→A的路径运动,回到点A时运动停止.设点P运动的路程长为长为x,AP长为y,则y关于x的函数图象大致是【 】
A. B.
C. D.
【答案】D。
【考点】动点问题的函数图象。
【分析】因为动点P按沿折线A→B→D→C→A的路径运动,因此,y关于x的函数图象分为四部分:A→B,B→D,D→C,C→A。
当动点P在A→B上时,函数y随x的增大而增大,且y=x,四个图象均正确。
当动点P在B→D上时,函数y在动点P位于BD中点时最小,且在中点两侧是对称的,故选项B错误。
当动点P在D→C上时,函数y随x的增大而增大,故选项A,C错误。
当动点P在C→A上时,函数y随x的增大而减小。故选项D正确。故选D。
3. (2012浙江温州4分)如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,
沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是【 】
A.一直增大 B.一直减小 C.先减小后增大 D.先增大后减小
【答案】C。
【考点】动点问题的函数图象。
【分析】如图所示,连接CM,∵M是AB的中点,
∴S△ACM=S△BCM=S△ABC,
开始时,S△MPQ=S△ACM=S△ABC;
由于P,Q两点同时出发,并同时到达终点,从而点P到达AC的中点时,点Q也到达BC的中点,此时,S△MPQ=S△ABC;
结束时,S△MPQ=S△BCM=S△ABC。
△MPQ的面积大小变化情况是:先减小后增大。故选C。
4. (2012江苏无锡3分)如图,以M(﹣5,0)为圆心、4为半径的圆与x轴交于A.B两点,P是⊙M上异于A.B的一动点,直线PA.PB分别交y轴于C.D,以CD为直径的⊙N与x轴交于E、F,则EF的长【 】
A. 等于4 B. 等于4 C. 等于6 D. 随P点
【答案】C。
【考点】圆周角定理,三角形内角和定理,相似三角形的判定和性质,垂径定理,勾股定理。
【分析】 连接NE,设圆N半径为r,ON=x,则OD=r﹣x,OC=r+x,
∵以M(﹣5,0)为圆心、4为半径的圆与x轴交于A.B两点,
∴OA=4+5=9,0B=5﹣4=1。
∵AB是⊙M的直径,∴∠APB=90°。
∵∠BOD=90°,∴∠PAB+∠PBA=90°,∠ODB+∠OBD=90°。
∵∠PBA=∠OBD,∴∠PAB=∠ODB。
∵∠APB=∠BOD=90°,∴△OBD∽△OCA。∴,即,即r2﹣x2=9。
由垂径定理得:OE=OF,
由勾股定理得:OE2=EN2﹣ON2=r2﹣x2=9。∴OE=OF=3,∴EF=2OE=6。
故选C。
5. (2012湖北黄冈3分)如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P 从点A 出发,沿AB方向以
每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm 的速度向终点C 运动,将
△PQC沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPCP′为菱形,则t的值为【 】
A. B. 2 C. D. 4
【答案】B。
【考点】动点问题,等腰直角三角形的性质,翻折对称的性质,菱形的性质,矩形。
【分析】如图,过点P作PD⊥AC于点D,连接PP′。
由题意知,点P、P′关于BC对称,∴BC垂直平分PP′。
∴QP=QP′,PE=P′E。
∴根据菱形的性质,若四边形QPCP′是菱形则CE=QE。
∵∠C=90°,AC=BC,∴∠A=450。
∵AP=t,∴PD= t。
易得,四边形PDCE是矩形,∴CE=PD= t,即CE=QE= t。
又BQ= t,BC=6,∴3 t=6,即t=2。
∴若四边形QPCP′为菱形,则t的值为2。故选B。
6.
(2012四川攀枝花3分)如图,直角梯形AOCD的边OC在x轴上,O为坐标原点,CD垂直于x轴,D(5,4),AD=2.若动点E、F同时从点O出发,E点沿折线OA→AD→DC运动,到达C点时停止;F点沿OC运动,到达C点是停止,它们运动的速度都是每秒1个单位长度.设E运动秒x时,△EOF的面积为y(平方单位),则y关于x的函数图象大致为【 】
A.B.C.D.
【答案】 C。
【考点】动点问题的函数图象,勾股定理,相似三角形的判定和性质,抛物线和直线的性质。
【分析】如图,过点A作AG⊥OC于点G。
∵D(5,4),AD=2,∴OC=5,CD=4,OG=3。
∴根据勾股定理,得OA=5。
∵点E、F的运动的速度都是每秒1个单位长度,
∴点E运动x秒(x<5)时,OE=OF=x。
∴当点E在OA上运动时,点F在OC上运动,当点E在AD和DC上运动时,点F在点C停止。
(1)当点E在OA上运动,点F在OC上运动时,如图,作EH⊥OC于点H。
∴EH∥AG。∴△EHO∽△AGO。∴,即。
∴。∴。
此时,y关于x的函数图象是开口向上的抛物线。
故选项A.B选项错误。
(2)当点E在AD上运动,点F在点C停止时,△EOF的面积不变。
∴。
(3)当点E在DC上运动,点F在点C停止时,如图。
EF=OA+AD+DC﹣x =11﹣x,OC=5。
∴。
此时,y关于x的函数图象是直线。
故选项D选项错误,选项C正确。故选C。
7. (2012四川内江3分)如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm
的速度,沿的方向运动,到达点C时停止,设运动时间为x(秒),,则y关于x的函数的图像大致为【 】
A. B. C. D.
【答案】C。
【考点】动点问题的函数图象,正三角形的性质,锐角三角函数定义,特殊角的三角函数值,勾股定理。
【分析】如图,过点C作CD垂直AB于点D,则
∵正△ABC的边长为3,∴∠A=∠B=∠C=60°,AC=3。
∴AD=,CD=。
①当0≤x≤3时,即点P在线段AB上时,AP=x,PD=(0≤x≤3)。
∴(0≤x≤3)。
∴该函数图象在0≤x≤3上是开口向上的抛物线。
②当3<x≤6时,即点P在线段BC上时,PC=(6-x)(3<x≤6);
∴y=(6-x)2=(x-6)2(3<x≤6),
∴该函数的图象在3<x≤6上是开口向上的抛物线。
综上所述,该函数为。符合此条件的图象为C。故选C。
8. (2012四川广元3分) 如图,点A的坐标为(-1,0),点B在直线上运动,当线段AB最短时,
点B的坐标为【 】
A.(0,0) B.(,) C.(,) D.(,)
【答案】B。
【考点】一次函数的性质,垂线段最短的性质,等腰直角三角形的判定和性质。
【分析】如图,过点A作AB′⊥OB,垂足为点B′,过B′作B′C⊥x轴,垂足为C。
由垂线段最短可知,当B′与点B重合时AB最短。
∵点B在直线y=x上运动,∴△AOB′是等腰直角三角形。
∴△B′CO为等腰直角三角形。
∵点A的坐标为(-1,0),∴OC=CB′=OA=×1=。
∴B′坐标为(-,- )。
∴当线段AB最短时,点B的坐标为(-,- )。故选B。
9. (2012四川巴中3分)如图,点P是等边△ABC的边上的一个作匀速运动的动点,其由点A开始沿
AB边运动到B,再沿BC边运动到C为止,设运动时间为t,△ACP的面积为S,则S与t的大致图象是
【 】
【答案】C。
【考点】动点问题的函数图象,正三角形的性质。
【分析】设等边三角形的边长为a,高为,点P的运动速度为v,根据等
边三角形的性质可得出点P在AB上运动时△ACP的面积为,也可
得出点P在BC上运动时△ACP1的面积为。
可见,△ACP的面积S都是关于t的一次函数关系式。
如图,根据正三角形轴对称的性质,当AP=AP1时,两三角形全等,它们是关于BD(AC边上的
中线)对称的,其中当点P与点B重合时面积最大。
∴点P在在AB上运动和在BC上运动得到的三角形是对称的。故选C。
10.
(2012四川乐山3分)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:
①△DFE是等腰直角三角形;
②四边形CEDF不可能为正方形;
③四边形CEDF的面积随点E位置的改变而发生变化;
④点C到线段EF的最大距离为.
其中正确结论的个数是【 】
A.1个 B.2个 C.3个 D.4个
【答案】B。
【考点】全等三角形的判定和性质,等腰直角三角形,三角形中位线定理,勾股定理。
【分析】①连接CD(如图1)。
∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB。
∵AE=CF,∴△ADE≌△CDF(SAS)。
∴ED=DF,∠CDF=∠EDA。
∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°。
∴△DFE是等腰直角三角形。
故此结论正确。
②当E、F分别为AC、BC中点时,∵由三角形中位线定理,DE平行且等于BC。
∴四边形CEDF是平行四边形。
又∵E、F分别为AC、BC中点,AC=BC,∴四边形CEDF是菱形。
又∵∠C=90°,∴四边形CEDF是正方形。
故此结论错误。
③如图2,分别过点D,作DM⊥AC,DN⊥BC,于点M,N,
由②,知四边形CMDN是正方形,∴DM=DN。
由①,知△DFE是等腰直角三角形,∴DE=DF。
∴Rt△ADE≌Rt△CDF(HL)。
∴由割补法可知四边形CEDF的面积等于正方形CMDN面积。
∴四边形CEDF的面积不随点E位置的改变而发生变化。
故此结论错误。
④由①,△DEF是等腰直角三角形,∴DE=EF。
当DF与BC垂直,即DF最小时, EF取最小值2。此时点C到线段EF的最大距离为。
故此结论正确。
故正确的有2个:①④。故选B。
11.
(2012辽宁鞍山3分)如图,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=BC=4,DE⊥BC于点E,且E是BC中点;动点P从点E出发沿路径ED→DA→AB以每秒1个单位长度的速度向终点B运动;设点P的运动时间为t秒,△PBC的面积为S,则下列能反映S与t的函数关系的图象是【 】
A. B. C. D.
【答案】B。
【考点】动点问题的函数图象。
【分析】分别求出点P在DE、AD、AB上运动时,S与t的函数关系式,结合选项即可得出答案:
根据题意得:当点P在ED上运动时,S=BC•PE=2t;
当点P在DA上运动时,此时S=8;
当点P在线段AB上运动时,S=BC(AB+AD+DE-t)=5-t。
结合选项所给的函数图象,可得B选项符合。故选B。
12. (2012辽宁铁岭3分)如图,□ABCD的AD边长为8,面积为32,四个全等的小平行四边形对称中心分别在□ABCD的顶点上,它们的各边与□ABCD的各边分别平行,且与□ABCD相似.若小平行四边形的一边长为x,且0<x≤8,阴影部分的面积的和为y,则y与x之间的函数关系的大致图象是【 】
A. B. C. D.
【答案】D。
【考点】动点问题的函数图象,平行四边形的性质,相似多边形的性质。
【分析】∵四个全等的小平行四边形对称中心分别在□ABCD的顶点上,
∴阴影部分的面积的和等于一个小平行四边形的面积。
∵□ABCD的AD边长为8,面积为32,小平行四边形的一边长为x,阴影部分的面积的和为y,且小平行四边形与□ABCD相似,
∴,即。
又∵0<x≤8,∴纵观各选项,只有D选项图象符合y与x之间的函数关系的大致图象。故选D。
13. (2012辽宁营口3分)如图,菱形ABCD的边长为2,∠B=.动点P从点B出发,沿B-C-D的路线向点D运动.设△ABP的面积为(B、P两点重合时,△ABP的面积可以看做0),点P运动的路程为,则与之间函数关系的图像大致为【 】
【答案】C。
【考点】动点问题的函数图象,菱形的性质,锐角三角函数定义,特殊角的三角函数值。
【分析】当点P在BC上运动时,如图,△ABP的高PE=BPsin∠B=,
∴△ABP的面积。
当点P在BC上运动时,如图,△ABP的高PF=BCsin∠B=1,
∴△ABP的面积。
因此,观察所给选项,只有C符合。故选C。
14. (2012山东德州3分)由图中三角形仅经过一次平移、旋转或轴对称变换,不能得到的图形是【 】
A. B. C. D.
【答案】B。
【考点】几何变换的性质。
【分析】根据平移、旋转和轴对称的性质即可得出正确结果:
A、图中三角形经过一次平移变换可得,故选项错误;
B、图中三角形需经过一次旋转和一次轴对称变换后,才能得到,故选项正确;
C、图中三角形经过一次轴对称变换可得,故选项错误;
D、图中三角形经过一次旋转变换可得,故选项错误。
故选B。
15. (2012山东烟台3分)如图,矩形ABCD中,P为CD中点,点Q为AB上的动点(不与A,B重合).过Q作QM⊥PA于M,QN⊥PB于N.设AQ的长度为x,QM与QN的长度和为y.则能表示y与x之间的函数关系的图象大致是【 】
A. B. C. D.
【答案】D。
【考点】动点问题的函数图象。
【分析】如图,连接PQ,作PE⊥AB垂足为E,
∵过Q作QM⊥PA于M,QN⊥PB于N,
∴S△PAB=PE×AB,S△PAB=S△PAQ+S△PQB=×QN•PB+×PA×MQ。
∵矩形ABCD中,P为CD中点,∴PA=PB。
∵QM与QN的长度和为y,
∴S△PAB=S△PAQ+S△PQB=×QN×PB+×PA×MQ=PB(QM+QN)=PBy。
∴S△PAB=PE×AB=PBy,∴。
∵PE=AD,∴PB,AB,PB都为定值。
∴y的值为定值,符合要求的图形为D。故选D。
16. (2012山东济南3分)如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为【 】
A. B. C.5 D.
【答案】A。
【考点】矩形的性质,直角三角形斜边上的中线性质,三角形三边关系,勾股定理。
【分析】如图,取AB的中点E,连接OE、DE、OD,
∵OD≤OE+DE,
∴当O、D、E三点共线时,点D到点O的距离最大,
此时,∵AB=2,BC=1,∴OE=AE=AB=1。
DE=,
∴OD的最大值为:。故选A。
17. (2012山东临沂3分)如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间函数关系可以用图象表示为【 】
A. B. C. D.
【答案】B。
【考点】动点问题的函数图象。
【分析】①0≤x≤4时,y=S△ABD﹣S△APQ=×4×4﹣•x•x=﹣x2+8,
②4≤x≤8时,y=S△BCD﹣S△CPQ=×4×4﹣•(8﹣x)•(8﹣x)=﹣(8﹣x)2+8,
∴y与x之间的函数关系可以用两段开口向下的二次函数图象表示,纵观各选项,只有B选项图象符合。故选B。
18.
(2012广西桂林3分)如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位
长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运
动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t,△APQ的面积为S,则S与t
的函数关系的图象是【 】
A. B. C.D.
【答案】D。
【考点】动点问题的函数图象,正方形的性质。
【分析】∵动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,
∴点Q运动到点C的时间为4÷2=2秒。
由题意得,当0≤t≤2时,即点P在AB上,点Q在BC上,AP=t,BQ=2t,
,为开口向上的抛物线的一部分。
当2<t≤4时,即点P在AB上,点Q在DC上,AP=t,AP上的高为4,
,为直线(一次函数)的一部分。
观察所给图象,符合条件的为选项D。故选D。
19. (2012广西北海3分)如图,等边△ABC的周长为6π,半径是1的⊙O从与AB相切于点D的位置
出发,在△ABC外部按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,则⊙O自转了:【 】
A.2周 B.3周 C.4周 D.5周
【答案】C。
【考点】等边三角形的性质,直线与圆的位置关系。
【分析】该圆运动可分为两部分:在三角形的三边运动以及绕过三角形的三个角,分别计算即可得到圆的自传周数:
⊙O在三边运动时自转周数:6π÷2π =3:
⊙O绕过三角形外角时,共自转了三角形外角和的度数:360°,即一周。
∴⊙O自转了3+1=4周。故选C。
20. (2012广西来宾3分)如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP的最大值是【 】
A.30° B.45° C.60° D.90°
【答案】A。
【考点】动点问题,切线的性质,锐角三角函数定义,特殊角的三角函数值。
【分析】如图,当点P运动到点P′,即AP′与⊙O相切时,∠OAP最大。
连接O P′,则A P′⊥O P′,即△AO P′是直角三角形。
∵OB=AB,OB= O P′,∴OA=2 O P′。
∴。∴∠OAP′=300,即∠OAP的最大值是=300。故选A。
21. (2012甘肃白银3分)如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D,E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是【 】
A.B.C.D.
【答案】 A。
【考点】函数的图象。
【分析】如图,根据题意知,当点C在AB上运动时,DE是一组平行线段,线段DE从左向右运动先变长,当线段DE过圆心时为最长,然后变短,有最大值,开口向下。观察四个选项,满足条件的是选项A。故选A。
22. (2012甘肃兰州4分)如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B→A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当△BEF是直角三角形时,t(s)的值为【 】
A. B.1 C.或1 D.或1或
【答案】D。
【考点】动点问题,圆周角定理,含30度角的直角三角形的性质,三角形中位线定理。
【分析】若△BEF是直角三角形,则有两种情况:①∠BFE=90°,②∠BEF=90°,分别讨论如下:
∵AB是⊙O的直径,∴∠ACB=90°。
Rt△ABC中,BC=2,∠ABC=60°,∴AB=2BC=4cm。
①当∠BFE=90°时;
Rt△BEF中,∠ABC=60°,则BE=2BF=2cm。
∴此时AE=AB-BE=2cm。
∵E点沿着A→B→A方向运动,∴E点运动的距离为:2cm或6cm。
∵点E以2cm/s的速度运动,∴t=1s或3s。
∵0≤t<3,∴t=3s不合题意,舍去。
∴当∠BFE=90°时,t=1s。
②当∠BEF=90°时,
同①可求得BE=cm,此时AE=AB-BE=cm。
∵E点沿着A→B→A方向运动,∴E点运动的距离为:3.5cm或4.5cm。
∵点E以2cm/s的速度运动,∴t=s或s(二者均在0≤t<3内)。
综上所述,当t的值为1、或s时,△BEF是直角三角形。故选D。
23. (2012黑龙江绥化3分)如图,点A、B、C、D为⊙O的四等分点,动点P从圆心O出发,
沿OC的路线做匀速运动,设运动的时间为t秒,∠APB的度数为y度,则下列图象中表示y(度)与t(秒)之间函数关系最恰当的是【 】
A.B.C.D.
【答案】C。
【考点】动点问题的函数图象,三角形外角性质,圆周角定理。
【分析】当动点P在OC上运动时,根据三角形的外角大于与它不相邻内角的性质,得∠APB逐渐减小;当动P在 CD 上运动时,根据同弧所以圆周角相等性质,得∠APB不变;
当动P在DO上运动时,同样根据三角形的外角大于与它不相邻内角的性质,得∠APB逐渐增大。故选C。
24. (2012黑龙江龙东地区3分)如图所示,四边形ABCD是边长为4cm的正方形,动点P在正方形ABCD
的边上沿着A→B→C→D的路径以1cm/s的速度运动,在这个运动过程中△APD的面积s(cm2)随时间t(s)
的变化关系用图象表示,正确的是【 】
A . B . C . D.
【答案】D。
【考点】动点问题的函数图象。
【分析】分别判断点P在AB、在BC上分别运动时,△APD的面积s(cm2)的变化情况用排它法求解即可:
点P在AB上运动时,△APD的面积S将随着时间的增多而不断增大,可排除B;
点P在BC上运动时,△APD的面积s随着时间的增多而不再变化,可排除A和C。故选D。
二、填空题
1. (2012浙江义乌4分)如图,已知点A(0,2)、B(,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在其左侧作等边△APQ,连接PB、BA.若四边形ABPQ为梯形,则:
(1)当AB为梯形的底时,点P的横坐标是 ▲ ;
(2)当AB为梯形的腰时,点P的横坐标是 ▲
【答案】,。
【考点】梯形的性质,等边三角形的性质,锐角三角函数定义和特殊角的三角函数值,平行四边形的判定和性质。
【分析】(1)如图1:当AB为梯形的底时,PQ∥AB,
∴Q在CP上。
∵△APQ是等边三角形,CP∥x轴,
∴AC垂直平分PQ。
∵A(0,2),C(0,4),∴AC=2。
∴。
∴当AB为梯形的底时,点P的横坐标是:。
(2)如图2,当AB为梯形的腰时,AQ∥BP,∴Q在y轴上。∴BP∥y轴。
∵CP∥x轴,∴四边形ABPC是平行四边形。∴CP=AB=。
∴当AB为梯形的腰时,点P的横坐标是:。
2. (2012江苏苏州3分)如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/s
的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:)
与点P移动的时间t(单位:s)的函数关系式如图②所示,则点P从开始移动到停止移动一共用了 ▲ 秒
(结果保留根号).
【答案】4+。
【考点】动点问题的函数图象,矩形的判定和性质,锐角三角函数定义,特殊角的三角函数值,勾股定理。
【分析】由图②可知,t在2到4秒时,△PAD的面积不发生变化,
∴在AB上运动的时间是2秒,在BC上运动的时间是4-2=2秒。
∵动点P的运动速度是1cm/s,∴AB=2,BC=2。
过点B作BE⊥AD于点E,过点C作CF⊥AD于点F,
则四边形BCFE是矩形。∴BE=CF,BC=EF=2。
∵∠A=60°,
∴,。
∵由图②可△ABD的面积为,
∴,即, 解得AD=6。
∴DF=AD-AE-EF=6-1-2=3。
在Rt△CDF中,,
∴动点P运动的总路程为AB+BC+CD=2+2+=4+(cm)。
∵动点P的运动速度是1cm/s,
∴点P从开始移动到停止移动一共用了(4+)÷1=4+s。
3. (2012江苏扬州3分)如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是 ▲ .
【答案】1。
【考点】动点问题,等腰直角三角形的性质,平角定义,勾股定理,二次函数的最值。
【分析】设AC=x,则BC=2-x,
∵△ACD和△BCE都是等腰直角三角形,
∴∠DCA=45°,∠ECB=45°,DC=,CE= 。
∴∠DCE=90°。
∴DE2=DC2+CE2=()2+[]2=x2-2x+2=(x-1)2+1。
∴当x=1时,DE2取得最小值,DE也取得最小值,最小值为1。
4. (2012福建厦门4分)如图,已知∠ABC=90°,AB=πr,BC=
,半径为r的⊙O从点A出发,沿A→B→C方向滚动到点C时停止.请你根据题意,在图上画出圆心O运动路径的示意图;圆心O运动的路程是 ▲ .
【答案】2πr。
【考点】作图题,弧长的计算。
【分析】根据题意画出图形,将运动路径分为三部分:OO1,O1O2 ,O2O3,分别计算出各部分的长再相加即可:
圆心O运动路径如图:
∵OO1=AB=πr;O1O2 =;O2O3=BC= ,
∴圆心O运动的路程是πr++ =2πr。
5. (2012湖北鄂州3分)在锐角三角形ABC中,BC=,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是 ▲ 。
【答案】4。
【考点】最短路线问题,全等三角形的判定和性质,三角形三边关系,垂直线段的性质,锐角三角函数定义,特殊角的三角函数值。
【分析】如图,在BA上截取BE=BN,连接EM。
∵∠ABC的平分线交AC于点D,∴∠EBM=∠NBM。
在△AME与△AMN中,∵BE=BN ,∠EBM=∠NBM,BM=BM,
∴△BME≌△BMN(SAS)。∴ME=MN。∴CM+MN=CM+ME≥CE。
又∵CM+MN有最小值,∴当CE是点C到直线AB的距离时,CE取最小值。
∵BC=,∠ABC=45°,∴CE的最小值为sin450=4。
∴CM+MN的最小值是4。
6. (2012湖北荆门3分)如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②cos∠ABE=;③当0<t≤5时,;④当秒时,△ABE∽△QBP;其中正确的结论是 ▲ (填序号).
【答案】①③④。
【考点】动点问题的函数图象,矩形的性质,勾股定理,锐角三角函数定义,相似三角形的判定和性质。
【分析】根据图(2)可知,当点P到达点E时点Q到达点C,
∵点P、Q的运动的速度都是1cm/秒,∴BC=BE=5。∴AD=BE=5。故结论①正确。
又∵从M到N的变化是2,∴ED=2。∴AE=AD﹣ED=5﹣2=3。
在Rt△ABE中,,
∴。故结论②错误。
过点P作PF⊥BC于点F,
∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB=。
∴PF=PBsin∠PBF=t。
∴当0<t≤5时,。故结论③正确。
当秒时,点P在CD上,
此时,PD=-BE-ED=,PQ=CD-PD=4-。
∵,∴。
又∵∠A=∠Q=90°,∴△ABE∽△QBP。故结论④正确。
综上所述,正确的有①③④。
7. (2012湖南张家界3分)已知线段AB=6,C.D是AB上两点,且AC=DB=1,P是线段CD上一动点,在AB同侧分别作等边三角形APE和等边三角形PBF,G为线段EF的中点,点P由点C移动到点D时,G点移动的路径长度为 ▲ .
【答案】2。
【考点】动点问题。等边三角形的性质,平行的判定,平行四边形的判定和性质,三角形中位线定理。
【分析】如图,分别延长AE、BF交于点H,连接HD,过点G作MN∥AB分别交HA、HD于点M、N。
∵△APE和△PBF是等边三角形,
∴∠A=∠FPB=60°,∠B=∠EPA=60°。
∴AH∥PF,BH∥PE。∴四边形EPFH为平行四边形。
∴EF与HP互相平分。
∵点G为EF的中点,
∴点G也正好为PH中点,即在点P的运动过程中,点G始终为PH的中点。
∴点G的运行轨迹为△HCD的中位线MN,
∵AB=6, AC=DB=1,∴CD=6﹣1﹣1=4。∴MN=2,即G的移动路径长为2。
8. (2012山东莱芜4分)在△ABC中,AB=AC=5,BC=6.若点P在边AC上移动,则BP的最小值是 ▲ .
三、解答题
1. (2012上海市14分)如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.
(1)当BC=1时,求线段OD的长;
(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;
(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.
【答案】解:(1)∵点O是圆心,OD⊥BC,BC=1,∴BD=BC=。
又∵OB=2,∴。
(2)存在,DE是不变的。
如图,连接AB,则。
∵D和E是中点,∴DE=。
(3)∵BD=x,∴。
∵∠1=∠2,∠3=∠4,∠AOB=900。
∴∠2+∠3=45°。
过D作DF⊥OE,垂足为点F。∴DF=OF=。
由△BOD∽△EDF,得,即
,解得EF=x。
∴OE=。
∴。
【考点】垂径定理,勾股定理,等腰直角三角形的判定和性质,三角形中位线定理,相似三角形的判定和性质。
【分析】(1)由OD⊥BC,根据垂径定理可得出BD=BC= ,在Rt△BOD中利用勾股定理即可求出OD的长。
(2)连接AB,由△AOB是等腰直角三角形可得出AB的长,再由D和E是中点,根据三角形中位线定理可得出DE= 。
(3)由BD=x,可知,由于∠1=∠2,∠3=∠4,所以∠2+∠3=45°,过D作DF⊥OE,则DF=OF=,EF=x,OE=,即可求得y关于x的函数关系式。
∵,点C是弧AB上的一个动点(不与点A、B重合),
∴。
2. (2012山西省14分)综合与实践:如图,在平面直角坐标系中,抛物线y=﹣x2+2x+3与x轴交于A.B两点,与y轴交于点C,点D是该抛物线的顶点.
(1)求直线AC的解析式及B.D两点的坐标;
(2)点P是x轴上一个动点,过P作直线l∥AC交抛物线于点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A.P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由.
(3)请在直线AC上找一点M,使△BDM的周长最小,求出M点的坐标.
【答案】解:(1)当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3。
∵点A在点B的左侧,∴A.B的坐标分别为(﹣1,0),(3,0)。
当x=0时,y=3。∴C点的坐标为(0,3)。
设直线AC的解析式为y=k1x+b1(k1≠0),则
,解得。
∴直线AC的解析式为y=3x+3。
∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4)。
(2)抛物线上有三个这样的点Q。如图,
①当点Q在Q1位置时,Q1的纵坐标为3,代入抛物线可得点Q1的坐标为(2,3);
②当点Q在点Q2位置时,点Q2的纵坐标为﹣3,代入抛物线可得点Q2坐标为(1+,﹣3);
③当点Q在Q3位置时,点Q3的纵坐标为﹣3,代入抛物线解析式可得,点Q3的坐标为(1﹣,﹣3)。
综上可得满足题意的点Q有三个,分别为:Q1(2,3),Q2(1+,﹣3),Q3(1﹣,﹣3)。
(3)点B作BB′⊥AC于点F,使B′F=BF,则B′为点B关于直线AC 的对称点.连接B′D交直线AC与点M,则点M为所求。
过点B′作B′E⊥x轴于点E。
∵∠1和∠2都是∠3的余角,∴∠1=∠2。
∴Rt△AOC∽Rt△AFB。∴。
由A(﹣1,0),B(3,0),C(0,3)得OA=1,OB=3,OC=3,
∴AC=,AB=4。
∴,解得。∴BB′=2BF=,
由∠1=∠2可得Rt△AOC∽Rt△B′EB,∴。
∴。∴B′E=,BE=。∴OE=BE﹣OB=﹣3=.
∴B′点的坐标为(﹣,)。
设直线B′D的解析式为y=k2x+b2(k2≠0),则
,解得。
∴直线B'D的解析式为:。
联立B'D与AC的直线解析式可得:
,解得。
∴M点的坐标为()。
【考点】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,二次函数的性质,平行四边形的性质,轴对称的性质,直角三角形两锐角的关系,三角形三边关系,勾股定理,相似三角形的判定和性质,解二元一次方程组。
【分析】(1)根据点在曲线上,点的坐标满足方程的关系,由抛物线y=﹣x2+2x+3与x轴交于A.B两点可求得A.B两点的坐标,同样,由由抛物线y=﹣x2+2x+3与y轴交于点C可求得C点的坐标。用待定系数法,可求得直线AC的解析式。由y=﹣x2+2x+3=﹣(x﹣1)2+4可求得顶点D的坐标。
(2)由于点P 在x轴上运动,故由平行四边形对边平行的性质求得点Q的坐标。
(3)点B作BB′⊥AC于点F,使B′F=BF,则B′为点B关于直线AC 的对称点.连接B′D交直线AC与点M,则根据轴对称和三角形三边关系,知点M为所求。
因此,由勾股定理求得AC=,AB=4。由Rt△AOC∽Rt△AFB求得,从而得到BB′=2BF=。由Rt△AOC∽Rt△B′EB得到B′E=,BE= ,OE=BE﹣OB=﹣3=,从而得到点B′的坐标。用待定系数法求出线B′D的解析式,与直线AC的解析式即可求得点M的坐标。
3. (2012广东梅州11分)如图,矩形OABC中,A(6,0)、C(0,2)、D(0,3
),射线l过点D且与x轴平行,点P、Q分别是l和x轴正半轴上动点,满足∠PQO=60°.
(1)①点B的坐标是 ;②∠CAO= 度;③当点Q与点A重合时,点P的坐标为 ;(直接写出答案)
(2)设OA的中心为N,PQ与线段AC相交于点M,是否存在点P,使△AMN为等腰三角形?若存在,请直接写出点P的横坐标为m;若不存在,请说明理由.
(3)设点P的横坐标为x,△OPQ与矩形OABC的重叠部分的面积为S,试求S与x的函数关系式和相应的自变量x的取值范围.
【答案】解:(1)①(6,2)。 ②30。③(3,3)。
(2)存在。m=0或m=3﹣或m=2。
(3)当0≤x≤3时,
如图1,OI=x,IQ=PI•tan60°=3,OQ=OI+IQ=3+x;
由题意可知直线l∥BC∥OA,
可得,∴EF=(3+x),
此时重叠部分是梯形,其面积为:
当3<x≤5时,如图2,
当5<x≤9时,如图3,
当x>9时,如图4,
。
综上所述,S与x的函数关系式为:
。
【考点】矩形的性质,梯形的性质,锐角三角函数,特殊角的三角函数值,相似三角形的判定和性质,解直角三角形。
【分析】(1)①由四边形OABC是矩形,根据矩形的性质,即可求得点B的坐标:
∵四边形OABC是矩形,∴AB=OC,OA=BC,
∵A(6,0)、C(0,2),∴点B的坐标为:(6,2)。
②由正切函数,即可求得∠CAO的度数:
∵,∴∠CAO=30°。
③由三角函数的性质,即可求得点P的坐标;如图:当点Q与点A重合时,过点P作PE⊥OA于E,
∵∠PQO=60°,D(0,3),∴PE=3。
∴。
∴OE=OA﹣AE=6﹣3=3,∴点P的坐标为(3,3)。
(2)分别从MN=AN,AM=AN与AM=MN去分析求解即可求得答案:
情况①:MN=AN=3,则∠AMN=∠MAN=30°,
∴∠MNO=60°。
∵∠PQO=60°,即∠MQO=60°,∴点N与Q重合。
∴点P与D重合。∴此时m=0。
情况②,如图AM=AN,作MJ⊥x轴、PI⊥x轴。
MJ=MQ•sin60°=AQ•sin600
又,
∴,解得:m=3﹣。
情况③AM=NM,此时M的横坐标是4.5,
过点P作PK⊥OA于K,过点M作MG⊥OA于G,
∴MG=。
∴。
∴KG=3﹣0.5=2.5,AG= AN=1.5。∴OK=2。∴m=2。
综上所述,点P的横坐标为m=0或m=3﹣或m=2。
(3)分别从当0≤x≤3时,当3<x≤5时,当5<x≤9时,当x>9时去分析求解即可求得答案。
4. (2012广东汕头12分)如图,抛物线与x轴交于A、B两点,与y轴交于点C,连接BC、AC.
(1)求AB和OC的长;
(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;
(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).
【答案】解:(1)在中,
令x=0,得y=-9,∴C(0,﹣9);
令y=0,即,解得:x1=﹣3,x2=6,∴A(﹣3,0)、B(6,0)。
∴AB=9,OC=9。
(2)∵ED∥BC,∴△AED∽△ABC,∴,即:。
∴s=m2(0<m<9)。
(3)∵S△AEC=AE•OC=m,S△AED=s=m2,
∴S△EDC=S△AEC﹣S△AED
=﹣m2+m=﹣(m﹣)2+。
∴△CDE的最大面积为,
此时,AE=m=,BE=AB﹣AE=。
又,
过E作EF⊥BC于F,则Rt△BEF∽Rt△BCO,得:,即:。
∴。
∴以E点为圆心,与BC相切的圆的面积 S⊙E=π•EF2=。
【考点】二次函数综合题,曲线上点的坐标与方程的关系,相似三角形的判定和性质,二次函数的最值,勾股定理,直线与圆相切的性质。
【分析】(1)已知抛物线的解析式,当x=0,可确定C点坐标;当y=0时,可确定A、B点的坐标,从而确定AB、OC的长。
(2)直线l∥BC,可得出△AED∽△ABC,它们的面积比等于相似比的平方,由此得到关于s、m的函数关系式;根据题目条件:点E与点A、B不重合,可确定m的取值范围。
(3)①首先用m列出△AEC的面积表达式,△AEC、△AED的面积差即为△CDE的面积,由此可得关于S△CDE关于m的函数关系式,根据函数的性质可得到S△CDE的最大面积以及此时m的值。
②过E做BC的垂线EF,这个垂线段的长即为与BC相切的⊙E的半径,可根据相似三角形△BEF、△BCO得到的相关比例线段求得该半径的值,由此得解。
5. (2012广东湛江12分)如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).
(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;
(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;
(3)当t为何值时,△MNA是一个等腰三角形?
【答案】解:(1)N(3,4)。
∵A(6,0)
∴可设经过O、A、N三点的抛物线的解析式为:y=ax(x﹣6),则将N(3,4)代入得
4=3a(3﹣6),解得a=﹣。
∴抛物线的解析式:。
(2)存在。过点N作NC⊥OA于C,
由题意,AN=t,AM=OA﹣OM=6﹣t,
∴NC=NA•sin∠BAO=。
∴。
∴△MNA的面积有最大值,且最大值为6。
(3)在Rt△NCA中,AN=t,NC=AN•sin∠BAO=,AC=AN•cos∠BAO=t。
∴OC=OA﹣AC=6﹣t。∴N(6﹣t,)。
∴。
又AM=6﹣t且0<t<6,
①当MN=AN时,,即t2﹣8t+12=0,解得t1=2,t2=6(舍去)。
②当MN=MA时,,即,解得t1=0(舍去),t2=。
③当AM=AN时,6﹣t=t,即t=。
综上所述,当t的值取 2或或 时,△MAN是等腰三角形。
【考点】二次函数综合题,动点问题,勾股定理,待定系数法,曲线上点的坐标与方程的关系,锐角三角函数定义,二次函数的最值,等腰三角形的性质。
【分析】(1)由A、B的坐标,可得到OA=6,OB=8,根据勾股定理可得AB=10。
当t=3时,AN=t=5=AB,即N是AB的中点,由此得到点N的坐标N(3,4)。
利用待定系数法,设交点式求出抛物线的解析式。
(2)△MNA中,过N作MA边上的高NC,先由∠BAO的正弦值求出NC的表达式,而AM=OA-OM,由三角形的面积公式可得到关于S△MNA关于t的函数关系式,由二次函数的最值原理即可求出△MNA的最大面积。
(3)首先求出N点的坐标,然后表示出AM、MN、AN三边的长。由于△MNA的腰和底不确定,若该三角形是等腰三角形,可分三种情况讨论:①MN=NA、②MN=MA、③NA=MA;直接根据等量关系列方程求解即可。
6. (2012浙江湖州12分)如图1,已知菱形ABCD的边长为,点A在x轴负半轴上,点B在坐标原点.点D的坐标为(- ,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.
(1)求这条抛物线的函数解析式;
(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF、AF.设菱形ABCD平移的时间为t秒(0<t< 3 )
①是否存在这样的t,使△ADF与△DEF相似?若存在,求出t的值;若不存在,请说明理由;
②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时,求t的取值范围.(写出答案即可)
【答案】解:(1)由题意得AB的中点坐标为(-3 ,0),CD的中点坐标为(0,3),
分别代入y=ax2+b,得,解得, 。
∴这条抛物线的函数解析式为y=-x2+3。
(2)①存在。如图2所示,在Rt△BCE中,∠BEC=90°,BE=3,BC= ,
∴ 。∴∠C=60°,∠CBE=30°。∴EC=BC=,DE=。
又∵AD∥BC,∴∠ADC+∠C=180°。∴∠ADC=180°-60°=120°
要使△ADF与△DEF相似,则△ADF中必有一个角为直角。
(I)若∠ADF=90°,∠EDF=120°-90°=30°。
在Rt△DEF中,DE=,得EF=1,DF=2。
又∵E(t,3),F(t,-t2+3),∴EF=3-(-t2+3)=t2。∴t2=1。
∵t>0,∴t=1 。
此时,∴。
又∵∠ADF=∠DEF,∴△ADF∽△DEF。
(II)若∠DFA=90°,可证得△DEF∽△FBA,则。
设EF=m,则FB=3-m。
∴ ,即m2-3m+6=0,此方程无实数根。∴此时t不存在。
(III)由题意得,∠DAF<∠DAB=60°,∴∠DAF≠90°,此时t不存在。
综上所述,存在t=1,使△ADF与△DEF相似。
②。
【考点】二次函数综合题,曲线上点的坐标与方程的关系,菱形的性质,平移的性质,勾股定理,锐角三角函数定义,特殊角的三角函数值,平行的性质,相似三角形的判定,解方程和不等式。
【分析】(1)根据已知条件求出AB和CD的中点坐标,然后利用待定系数法求该二次函数的解析式。
(2)①如图2所示,△ADF与△DEF相似,包括三种情况,需要分类讨论:
(I)若∠ADF=90°时,△ADF∽△DEF,求此时t的值。
(II)若∠ADF=90°时,△DEF∽△FBA,利用相似三角形的对应边成比例可以求得相应的t的值。
(III)∠DAF≠90°,此时t不存在。
②画出旋转后的图形,认真分析满足题意要求时,需要具备什么样的限制条件,然后根据限制条件列出不等式,求出t的取值范围:
如图3所示,依题意作出旋转后的三角形△FE′C′,过C′作MN⊥x轴,分别交抛物线、x轴于点M、点N。
观察图形可知,欲使△FE′C′落在指定区域内,必须满足:EE′≤BE且MN≥C′N。
∵F(t,3-t2),∴EF=3-(3-t2)=t2。∴EE′=2EF=2t2。
由EE′≤BE,得2t2≤3,解得。
又∵C′E′=CE= ,∴C′点的横坐标为t-。∴MN=3-(t-)2,
又C′N=BE′=BE-EE′=3-2t2,
∴由MN≥C′N,得3-(t- )2≥3-2t2,即t2+2t-3≥0。
求出t2+2t-3=0,得,∴t2+2t-3≥0即。
∵,∴,解得t≥。
∴t的取值范围为:。
7. (2012浙江绍兴14分)如图,矩形OABC的两边在坐标轴上,连接AC,抛物线经过A,B两点。
(1)求A点坐标及线段AB的长;
(2)若点P由点A出发以每秒1个单位的速度沿AB边向点B移动,1秒后点Q也由点A出发以每秒7个单位的速度沿AO,OC,CB边向点B移动,当其中一个点到达终点时另一个点也停止移动,点P的移动时间为t秒。
①当PQ⊥AC时,求t的值;
②当PQ∥AC时,对于抛物线对称轴上一点H,∠HOQ>∠POQ,求点H的纵坐标的取值范围。
【答案】解:(1)由抛物线知:当x=0时,y=﹣2,∴A(0,﹣2)。
∵四边形OABC是矩形,∴AB∥x轴,即A、B的纵坐标相同。
当y=﹣2时,,解得。∴B(4,﹣2)。
∴AB=4。
(2)①由题意知:A点移动路程为AP=t,Q点移动路程为7(t-1)=7 t -7。
当Q点在OA上时,即,时,
如图1,若PQ⊥AC,则有Rt△QAP∽Rt△ABC。
∴,即,解得。
∵,∴此时t值不合题意。
当Q点在OC上时,即,时,
如图2,过Q点作QD⊥AB。∴AD=OQ=7(t﹣1)﹣2=7t﹣9。
∴DP=t﹣(7t﹣9)=9﹣6t。
若PQ⊥AC,则有Rt△QDP∽Rt△ABC,
∴,即,解得。
∵,∴符合题意。
当Q点在BC上时,即,时,
如图3,若PQ⊥AC,过Q点作QG∥AC,
则QG⊥PG,即∠GQP=90°。
∴∠QPB>90°,这与△QPB的内角和为180°矛盾,
此时PQ不与AC垂直。
综上所述,当时,有PQ⊥AC。
②当PQ∥AC时,如图4,△BPQ∽△BAC,∴,
∴,解得t=2。
即当t=2时,PQ∥AC。此时AP=2,BQ=CQ=1。
∴P(2,﹣2),Q(4,﹣1)。
抛物线对称轴的解析式为x=2,
当H1为对称轴与OP的交点时,有∠H1OQ=∠POQ,
∴当yH<﹣2时,∠HOQ>∠POQ。
作P点关于OQ的对称点P′,连接PP′交OQ于点M,过P′作P′N垂直于对称轴,垂足为N,连接OP′,
在Rt△OCQ中,∵OC=4,CQ=1。∴OQ=,
∵S△OPQ=S四边形ABCD﹣S△AOP﹣S△COQ﹣S△QBP=3=OQ×PM,
∴PM=。∴PP′=2PM=。
∵NPP′=∠COQ。∴Rt△COQ∽△Rt△NPP′。
∴,即,解得 ,。
∴P′()。∴直线OP′的解析式为。
∴OP′与NP的交点H2(2,)。
∴当时,∠HOP>∠POQ。
综上所述,当或时,∠HOQ>∠POQ。
【考点】二次函数综合题,曲线图上点的坐标与方程的关系,矩形的性质,相似三角形的判定和性质,二次函数的性质,对称的性质。
【分析】(1)已知抛物线的解析式,将x=0代入即可得A点坐标;由于四边形OABC是矩形,那么A、B纵坐标相同,代入该纵坐标可求出B点坐标,则AB长可求。
(2)①Q点的位置可分:在OA上、在OC上、在CB上 三段来分析,若PQ⊥AC时,很显然前两种情况符合要求,首先确定这三段上t的取值范围,然后通过相似三角形(或构建相似三角形),利用比例线段来求出t的值,然后由t的取值范围将不合题意的值舍去。
②当PQ∥AC时,△BPQ∽△BAC,通过比例线段求出t的值以及P、Q点的坐标,可判定P点在抛物线的对称轴上,若P、H1重合,此时有∠H1OQ=∠POQ。若作P点关于OQ的对称点P′,OP′与NP的交点H2,亦可得到∠H2OQ=∠POQ,而题目要求的是∠HOQ>∠POQ,那么H1点以下、H2点以上的H点都是符合要求的。
8. (2012江苏南通12分)如图,在△ABC中,AB=AC=10cm,BC=12cm,点D是BC边的中点.点P从点B出发,以acm/s(a>0)的速度沿BA匀速向点A运动;点Q同时以1cm/s的速度从点D出发,沿DB匀速向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,设它们运动的时间为ts.
(1)若a=2,△BPQ∽△BDA,求t的值;
(2)设点M在AC上,四边形PQCM为平行四边形.
①若a=,求PQ的长;
②是否存在实数a,使得点P在∠ACB的平分线上?若存在,请求出a的值;若不存在,请说明
理由.
【答案】解:(1)△ABC中,AB=AC=10,BC=12,D是BC的中点,∴BD=CD=BC=6。
∵a=2,∴BP=2t,DQ=t。∴BQ=BD-QD=6-t。
∵△BPQ∽△BDA,∴,即,解得:。
(2)①过点P作PE⊥BC于E,
∵四边形PQCM为平行四边形,
∴PM∥CQ,PQ∥CM,PQ=CM。
∴PB:AB=CM:AC。
∵AB=AC,∴PB=CM。∴PB=PQ。
∴BE=BQ=(6-t)。
∵a=,∴PB=t。
∵AD⊥BC,∴PE∥AD。∴PB:AB=BE:BD,即。
解得,t=。
∴PQ=PB=t=(cm)。
②不存在.理由如下:
∵四边形PQCM为平行四边形,∴PM∥CQ,PQ∥CM,PQ=CM。
∴PB:AB=CM:AC。
∵AB=AC,∴PB=CM,∴PB=PQ。
若点P在∠ACB的平分线上,则∠PCQ=∠PCM,
∵PM∥CQ,∴∠PCQ=∠CPM。∴∠CPM=∠PCM。
∴PM=CM。∴四边形PQCM是菱形。∴PQ=CQ。
∴PB=CQ。
∵PB=at,CQ=BD+QD=6+t,∴PM=CQ=6+t,AP=AB-PB=10-at,且 at=6+t①。
∵PM∥CQ,∴PM:BC=AP:AB,∴,化简得:6at+5t=30②。
把①代入②得,t=。
∴不存在实数a,使得点P在∠ACB的平分线上。
9. (2012江苏无锡10分)如图1,A.D分别在x轴和y轴上,CD∥x轴,BC∥y轴.点P从D点出发,以1cm/s的速度,沿五边形OABCD的边匀速运动一周.记顺次连接P、O、D三点所围成图形的面积为Scm2,点P运动的时间为ts.已知S与t之间的函数关系如图2中折线段OEFGHI所示.
(1)求A.B两点的坐标;
(2)若直线PD将五边形OABCD分成面积相等的两部分,求直线PD的函数关系式.
【答案】解:(1)在图1中,连接AD,设点A的坐标为(a,0),
由图2知,当点P到达点A时,
DO+OA=6,即DO=6﹣AO=6﹣a,
S△AOD=4,
∴DO•AO=4,即(6﹣a)a=4。
∴a2﹣6a+8=0,解得a=2或a=4。
由图2知,DO>3,∴AO<3。∴a=2。
∴A的坐标为(2,0),D点坐标为(0,4)。
在图1中,延长CB交x轴于M,由图2,知AB=11﹣6=5,CB=12﹣11=1。
∴MB=4﹣1=3。∴。∴OM=2+4=6。
∴B点坐标为(6,3)。
(2)显然点P一定在AB上.设点P(x,y),连PC.PO,则
S四边形DPBC=S△DPC+S△PBC=S五边形OABCD
=(S矩形OMCD﹣S△ABM)=9,
∴×6×(4﹣y)+×1×(6﹣x)=9,即x+6y=12①。
同理,由S四边形DPAO=9可得2x+y=9②。
联立①②,解得x=,y=。∴P(,)。
设直线PD的函数关系式为y=kx+4,将P(,)代入,得=k+4。
解得,k=﹣。
∴直线PD的函数关系式为y=﹣x+4。
【考点】动点问题,一次函数综合题,矩形的性质,勾股定理,待定系数法,直线上点的坐标与方程的关系。
【分析】(1)连接AD,设点A的坐标为(a,0),由图2得出DO=6﹣AO和S△AOD=4,即可得出DO•AO=4,从而得出a的值,再根据图2得出A的坐标。
延长CB交x轴于M,根据D点的坐标得出AB=5,CB=1,即可由勾股定理求出AM,从而得出点B的坐标。
(2)设点P(x,y),连PC.PO,得出S四边形DPBC和S四边形DPAO的面积,再进行整理,即可得出x与y的关系,联立求出x、y的值,即可得出P点的坐标。再用待定系数法求出设直线PD的函数关系式。
10. (2012江苏徐州8分)如图1,A、B、C、D为矩形的四个顶点,AD=4cm,AB=dcm。动点E、F分别从点D、B出发,点E以1 cm/s的速度沿边DA向点A移动,点F以1 cm/s的速度沿边BC向点C移动,点F移动到点C时,两点同时停止移动。以EF为边作正方形EFGH,点F出发xs时,正方形EFGH的面积为ycm2。已知y与x的函数图象是抛物线的一部分,如图2所示。请根据图中信息,解答下列问题:
(1)自变量x的取值范围是 ▲ ;
(2)d= ▲ ,m= ▲ ,n= ▲ ;
(3)F出发多少秒时,正方形EFGH的面积为16cm2?
【答案】解:(1)0≤x≤4。
(2)3,2,25.
(3)过点E作EI⊥BC垂足为点I。则四边形DEIC为矩形。
∴EI=DC=3,CI=DE=x。
∵BF=x,∴IF=4-2x。
在Rt△EFI中,。
∵y是以EF为边长的正方形EFGH的面积,
∴。
当y=16时,,
解得,。
∴F出发或秒时,正方形EFGH的面积为16cm2。
【考点】动点问题,矩形的判定和性质,平行线间垂直线段的性质,勾股定理,解一元二次方程。
【分析】(1)自变量x的取值范围是点F从点C到点B的运动时间,由时间=距离÷速度,即可求。
(2)由图2知,正方形EFGH的面积的最小值是9,而正方形EFGH的面积最小时,根据地两平行线间垂直线段最短的性质,得d=AB=EF=3。
当正方形EFGH的面积最小时,由BF=DE和EF∥AB得,E、F分别为AD、BC的中点,即m=2。
当正方形EFGH的面积最大时,EF等于矩形ABCD的对角线,根据勾股定理,它为5,即n=25。
(3)求出正方形EFGH的面积y关于x的函数关系式,即可求得F出发或秒时,正方形EFGH的面积为16cm2。
11. (2012江苏盐城12分)
知识迁移: 当且时,因为≥,所以≥,从而≥(当
时取等号).记函数,由上述结论可知:当时,该函数有最小值为.
直接应用:已知函数与函数, 则当_________时,取得最小值
为_________.
变形应用:已知函数与函数,求的最小值,并指出取得该
最小值时相应的的值.
实际应用:已知某汽车的一次运输成本包含以下三个部分:一是固定费用,共元;二是燃油费,每
千米为元;三是折旧费,它与路程的平方成正比,比例系数为.设该汽车一次运输的路程为千米,
求当为多少时,该汽车平均每千米的运输成本最低?最低是多少元?
【答案】解:直接应用:1;2 。
变形应用:∵ ,
∴有最小值为。
当,即时取得该最小值。
实际应用:设该汽车平均每千米的运输成本为元,则
,
∴当(千米)时,
该汽车平均每千米的运输成本最低,
最低成本为元。
【考点】二次函数的应用,几何不等式。
【分析】直接运用:可以直接套用题意所给的结论,即可得出结果:
∵函数,由上述结论可知:当时,该函数有最小值为,
∴函数与函数,则当时,取得最小值为。
变形运用:先得出的表达式,然后将看做一个整体,再运用所给结论即可。
实际运用:设该汽车平均每千米的运输成本为元,则可表示出平均每千米的运输成本,利用所
给的结论即可得出答案。
12. (2012江苏常州9分)已知,在矩形ABCD中,AB=4,BC=2,点M为边BC的中点,点P为边CD上的动点(点P异于C、D两点)。连接PM,过点P作PM的垂线与射线DA相交于点E(如图)。设CP=x,DE=y。
(1)写出y与x之间的函数关系式 ▲ ;
(2)若点E与点A重合,则x的值为 ▲ ;
(3)是否存在点P,使得点D关于直线PE的对称点D′落在边AB上?若存在,求x的值;若不存在,请说明理由。
【答案】解:(1)y=-x2+4x。
(2)或。
(3)存在。
过点P作PH⊥AB于点H。则
∵点D关于直线PE的对称点D′落在边AB上,
∴P D′=PD=4-x,E D′=ED= y=-x2+4x,EA=AD-ED= x2-4x+2,∠P D′E=∠D=900。
在Rt△D′P H中,PH=2, D′P =DP=4-x,D′H=。
∵∠ E D′A=1800-900-∠P D′H=900-∠P D′H=∠D′P H,∠P D′E=∠P HD′
=900,
∴△E D′A∽△D′P H。∴,即,
即,两边平方并整理得,2x2-4x+1=0。解得。
∵当时,y=,
∴此时,点E已在边DA延长线上,不合题意,舍去(实际上是无理方程的增根)。
∵当时,y=,
∴此时,点E在边AD上,符合题意。
∴当时,点D关于直线PE的对称点D′落在边AB上。
【考点】矩形的性质,相似三角形的判定和性质,勾股定理,折叠对称的性质,解无理方程。
【分析】(1)∵CM=1,CP=x,DE=y,DP=4-x,且△MCP∽△PDE,
∴,即。∴y=-x2+4x。
(2)当点E与点A重合时,y=2,即2=-x2+4x,x2-4x+2=0。
解得。
(3)过点P作PH⊥AB于点H,则由点D关于直线PE的对称点D′落在边AB上,可得△E D′A与△D′P H相似,由对应边成比例得得关于x的方程即可求解。注意检验。
13. (2012江苏苏州9分)如图,正方形ABCD的边AD与矩形EFGH的边FG重合,将正方形ABCD
以1cm/s的速度沿FG方向移动,移动开始前点A与点F重合.在移动过程中,边AD始终与边FG重合,
连接CG,过点A作CG的平行线交线段GH于点P,连接PD.已知正方形ABCD的边长为1cm,矩形EFGH
的边FG、GH的长分别为4cm、3cm.设正方形移动时间为x(s),线段GP的长为y(cm),其中
0≤x≤2.5.
⑴试求出y关于x的函数关系式,并求出y =3时相应x的值;
⑵记△DGP的面积为S1,△CDG的面积为S2.试说明S1-S2是常数;
⑶当线段PD所在直线与正方形ABCD的对角线AC垂直时,求线段PD的长.
【答案】解:(1)∵CG∥AP,∴∠CGD=∠PAG,则。∴。
∵GF=4,CD=DA=1,AF=x,∴GD=3-x,AG=4-x。
∴,即。∴y关于x的函数关系式为。
当y =3时,,解得:x=2.5。
(2)∵,
∴为常数。
(3)延长PD交AC于点Q.
∵正方形ABCD中,AC为对角线,∴∠CAD=45°。
∵PQ⊥AC,∴∠ADQ=45°。
∴∠GDP=∠ADQ=45°。
∴△DGP是等腰直角三角形,则GD=GP。
∴,化简得:,解得:。
∵0≤x≤2.5,∴。
在Rt△DGP中,。
【考点】正方形的性质,一元二次方程的应用,等腰直角三角形的性质,矩形的性质,解直角三角形,锐角三角函数定义,特殊角的三角函数值。
【分析】(1)根据题意表示出AG、GD的长度,再由可解出x的值。
(2)利用(1)得出的y与x的关系式表示出S1、S2,然后作差即可。
(3)延长PD交AC于点Q,然后判断△DGP是等腰直角三角形,从而结合x的范围得出x的值,在Rt△DGP中,解直角三角形可得出PD的长度。
14. (2012江苏南京10分)如图,A、B为⊙O上的两个定点,P是⊙O上的动点(P不与A、B重合),我们称∠APB为⊙O上关于A、B的滑动角。
(1)已知∠APB是上关于点A、B的滑动角。
① 若AB为⊙O的直径,则∠APB=
② 若⊙O半径为1,AB=,求∠APB的度数
(2)已知为外一点,以为圆心作一个圆与相交于A、B两点,∠APB为上关于点A、B的滑动角,直线PA、PB分别交于点M、N(点M与点A、点N与点B均不重合),连接AN,试探索∠APB与∠MAN、∠ANB之间的数量关系。
【答案】解:(1)①900。
②如图,连接AB、OA、OB.
在△AOB中,∵OA=OB=1.AB=,∴OA2+OB2=AB2。
∴∠AOB=90°。
当点P在优弧 AB 上时(如图1),∠APB=∠AOB=45°;
当点P在劣弧 AB 上时(如图2),
∠APB=(360°-∠AOB)=135°。
(2)根据点P在⊙O1上的位置分为以下四种情况.
第一种情况:点P在⊙O2外,且点A在点P与点M之间,点B在点P与点N之间,如图3,
∵∠MAN=∠APB+∠ANB,
∴∠APB=∠MAN-∠ANB。
第二种情况:点P在⊙O2外,且点A在点P与点M之间,点N在点P与点B之间,如图4,
∵∠MAN=∠APB+∠ANP=∠APB+(180°-∠ANB),
∴∠APB=∠MAN+∠ANB-180°。
第三种情况:点P在⊙O2外,且点M在点P与点A之间,点B在点P与点N之间,如图5,
∵∠APB+∠ANB+∠MAN=180°,
∴∠APB=180°-∠MAN-∠ANB。
第四种情况:点P在⊙O2内,如图6,
∠APB=∠MAN+∠ANB。
【考点】圆周角定理,勾股定理逆定理,三角形内角和定理和外角性质。
【分析】(1)①根据直径所对的圆周角等于90°即可得∠APB=900。
②根据勾股定理的逆定理可得∠AOB=90°,再分点P在优弧上;点P在劣弧上两种情况讨论即可。
(2)根据点P在⊙O1上的位置分为四种情况得到∠APB与∠MAN、∠ANB之间的数量关系。
15. (2012江苏苏州8分)如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上
的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC的长为.
⑴当 时,求弦PA、PB的长度;
⑵当x为何值时,的值最大?最大值是多少?
【答案】解:(1)∵⊙O与直线l相切于点A,AB为⊙O的直径,∴AB⊥l。
又∵PC⊥l,∴AB∥PC. ∴∠CPA=∠PAB。
∵AB为⊙O的直径,∴∠APB=90°。
∴∠PCA=∠APB.∴△PCA∽△APB。
∴,即PA2=PC·PD。
∵PC=,AB=4,∴。
∴在Rt△APB中,由勾股定理得:。
(2)过O作OE⊥PD,垂足为E。
∵PD是⊙O的弦,OF⊥PD,∴PF=FD。
在矩形OECA中,CE=OA=2,∴PE=ED=x-2。
∴CD=PC-PD= x-2(x-2)=4-x 。
∴。
∵
∴当时,有最大值,最大值是2。
【考点】切线的性质,平行的判定和性质,相似三角形的判定和性质,勾股定理,垂径定理,矩形的判定和性质,二次函数的最值。
【分析】(1)由直线l与圆相切于点A,且AB为圆的直径,根据切线的性质得到AB垂直于直线l,又PC垂直于直线l,根据垂直于同一条直线的两直线平行,得到AB与PC平行,根据两直线平行内错角相等得到一对内错角相等,再由一对直角相等,利用两对对应角相等的两三角形相似可得出△PCA与△PAB相似,由相似得比例,将PC及直径AB的长代入求出PA的长,在Rt△APB中,由AB及PA的长,利用勾股定理即可求出PB的长。
(2)过O作OE垂直于PD,与PD交于点E,由垂径定理得到E为PD的中点,再由三个角为直角的四边形为矩形得到OACE为矩形,根据矩形的对边相等,可得出EC=OA=2,用PC-EC的长表示出PE,根据PD=2PE表示出PD,再由PC-PD表示出CD,代入所求的式子中,整理后得到关于x的二次函数,配方后根据自变量x的范围,利用二次函数的性质即可求出所求式子的最大值及此时x的取值。
16. (2012江苏无锡10分)如图,菱形ABCD的边长为2cm,∠DAB=60°.点P从A点出发,以cm/s的速度,沿AC向C作匀速运动;与此同时,点Q也从A点出发,以1cm/s的速度,沿射线AB作匀速运动.当P运动到C点时,P、Q都停止运动.设点P运动的时间为ts.
(1)当P异于A.C时,请说明PQ∥BC;
(2)以P为圆心、PQ长为半径作圆,请问:在整个运动过程中,t为怎样的值时,⊙P与边BC分别有1个公共点和2个公共点?
【答案】解:(1)∵四边形ABCD是菱形,且菱形ABCD的边长为2,
∴AB=BC=2,∠BAC=∠DAB。
又∵∠DAB=60°,∴∠BAC=∠BCA=30°。
如图1,连接BD交AC于O。
∵四边形ABCD是菱形,
∴AC⊥BD,OA=AC。
∴OB=AB=1。∴OA=,AC=2OA=2。
运动ts后,AP=t,AO=t,∴。
又∵∠PAQ=∠CAB,∴△PAQ∽△CAB.∴∠APQ=∠ACB.
∴PQ∥BC.
(2)如图2,⊙P与BC切于点M,连接PM,则PM⊥BC。
在Rt△CPM中,∵∠PCM=30°,∴PM=。
由PM=PQ=AQ=t,即=t,解得t=,
此时⊙P与边BC有一个公共点。
如图3,⊙P过点B,此时PQ=PB,
∵∠PQB=∠PAQ+∠APQ=60°
∴△PQB为等边三角形。∴QB=PQ=AQ=t。∴t=1。
∴当时,⊙P与边BC有2个公共点。
如图4,⊙P过点C,此时PC=PQ,即 =t
∴t=。
∴当1≤t≤时,⊙P与边BC有一个公共点。
当点P运动到点C,即t=2时,Q、B重合,⊙P过点B,
此时,⊙P与边BC有一个公共点。
综上所述,当t=或1≤t≤或t=2时,⊙P与菱形ABCD的边BC有1个公共点;当时,⊙P与边BC有2个公共点。
【考点】直线与圆的位置关系,菱形的性质,含30°角直角三角形的性质,相似三角形的判定和性质,平行的判定,切线的性质,等边三角形的判定和性质。
【分析】(1)连接BD交AC于O,构建直角三角形AOB.利用菱形的对角线互相垂直、对角线平分对角、邻边相等的性质推知△PAQ∽△CAB;然后根据“相似三角形的对应角相等”证得∠APQ=∠ACB;最后根据平行线的判定定理“同位角相等,两直线平行”可以证得结论。
(2)分⊙P与BC切于点M,⊙P过点B,⊙P过点C和点P运动到点C四各情况讨论即可。
17. (2012江苏盐城10分)如图所示,,,,点是以为直径的半圆上一动点, 交直线于点,设.
(1)当时,求的长;
(2)当时,求线段的长;
(3)若要使点在线段的延长线上,则的取值范围是_________.(直接写出答案)
【答案】解: (1)连接,在⊙中,
∵,∴。
∵,∴。
∴ 。
(2)∵为⊙的直径,∴。
又∵,,∴,。
又∵, ∴。∴。
又∵, ∴。∴。
又∵ ,∴。∴。
又∵,∴。∴∽。
∴。
又∵。 ∴。∴。
(3)<<。
【考点】圆周角定理,弧长的计算,锐角三角函数定义,特殊角的三角函数值,相似三角形的判定和性质。
【分析】(1)先连接,由圆周角定理,可求得,又由⊙的直径为,即可求得其半径,然后由弧长公式,即可求得答案。
(2)先证得∽,然后由相似三角形的对应边成比例,可得 ,从而求得答案。
(3)先求得与重合时的度数,则可求得点在线段的延长线上时,的取值范围:
如图,当与重合时,
∵是直径, ∴。∴,,共线。
∵,
∴在中。
∴。∴=30°。
∴ =90°-=60°。
当′在的延长线上时,如图,可得>=60°。
∵0°<<90°,
∴的取值范围是:60°<<90°。
18. (2012广东河源9分)如图,矩形OABC中,A(6,0)、C(0,2)、D(0,3),射线l过点D且与
x轴平行,点P、Q分别是l和x轴的正半轴上的动点,满足∠PQO=60º.
(1)点B的坐标是 ,∠CAO= º,当点Q与点A重合时,点P的坐标
为 ;
(2)设点P的横坐标为x,△OPQ与矩形OABC重叠部分的面积为S,试求S与x的函数关系式和相应
的自变量x的取值范围.
【答案】解:(1)(6,2)。 30。(3,3)。
(2)当0≤x≤3时,
如图1,OI=x,IQ=PI•tan60°=3,OQ=OI+IQ=3+x;
由题意可知直线l∥BC∥OA,
可得,∴EF=(3+x),
此时重叠部分是梯形,其面积为:
当3<x≤5时,如图2,
当5<x≤9时,如图3,
当x>9时,如图4,
。
综上所述,S与x的函数关系式为:
。
【考点】矩形的性质,梯形的性质,锐角三角函数,特殊角的三角函数值,相似三角形的判定和性质,解直角三角形。
【分析】(1)①由四边形OABC是矩形,根据矩形的性质,即可求得点B的坐标:
∵四边形OABC是矩形,∴AB=OC,OA=BC,
∵A(6,0)、C(0,2),∴点B的坐标为:(6,2)。
②由正切函数,即可求得∠CAO的度数:
∵,∴∠CAO=30°。
③由三角函数的性质,即可求得点P的坐标;如图:当点Q与点A重合时,过点P作PE⊥OA于E,
∵∠PQO=60°,D(0,3),∴PE=3。
∴。
∴OE=OA﹣AE=6﹣3=3,∴点P的坐标为(3,3)。
(2)分别从当0≤x≤3时,当3<x≤5时,当5<x≤9时,当x>9时去分析求解即可求得答案。
19. (2012福建南平14分)如图,在△ABC中,点D、E分别在边BC、AC上,连接AD、DE,且∠1=∠B=∠C.
(1)由题设条件,请写出三个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明)
答:结论一: ;结论二: ;结论三: .
(2)若∠B=45°,BC=2,当点D在BC上运动时(点D不与B、C重合),
①求CE的最大值;
②若△ADE是等腰三角形,求此时BD的长.
(注意:在第(2)的求解过程中,若有运用(1)中得出的结论,须加以证明)
【答案】解:(1)AB=AC;∠AED=∠ADC;△ADE∽△ACD。
(2)①∵∠B=∠C,∠B=45°,∴△ACB为等腰直角三角形。
∴。
∵∠1=∠C,∠DAE=∠CAD,∴△ADE∽△ACD。
∴AD:AC=AE:AD,∴ 。
当AD最小时,AE最小,此时AD⊥BC,AD=BC=1。
∴AE的最小值为 。∴CE的最大值= 。
②当AD=AE时,∴∠1=∠AED=45°,∴∠DAE=90°。
∴点D与B重合,不合题意舍去。
当EA=ED时,如图1,∴∠EAD=∠1=45°。
∴AD平分∠BAC,∴AD垂直平分BC。∴BD=1。
当DA=DE时,如图2,
∵△ADE∽△ACD,∴DA:AC=DE:DC。
∴DC=CA=。∴BD=BC-DC=2-。
综上所述,当△ADE是等腰三角形时,BD的长的长为1或2-。
【考点】相似三角形的判定和性质,勾股定理,等腰(直角)三角形的判定和性质。
【分析】(1)由∠B=∠C,根据等腰三角形的性质可得AB=AC;由∠1=∠C,∠AED=∠EDC+∠C得到∠AED=∠ADC;又由∠DAE=∠CAD,根据相似三角形的判定可得到△ADE∽△ACD。
(2)①由∠B=∠C,∠B=45°可得△ACB为等腰直角三角形,则
,由∠1=∠C,∠DAE=∠CAD,根据相似三角形的判定可得△ADE∽△ACD,则有AD:AC=AE:AD,即,当AD⊥BC,AD最小,此时AE最小,从而由CE=AC-AE得到CE的最大值。
②分当AD=AE,,EA=ED,DA=DE三种情况讨论即可。
20. (2012福建漳州14分)如图,在OABC中,点A在x轴上,∠AOC=60o,OC=4cm.OA=8cm.动
点P从点O出发,以1cm/s的速度沿线段OA→AB运动;动点Q同时从点O出发,以
acm/s的速度沿线段OC→CB运动,其中一点先到达终点B时,另一点也随之停止运动.
设运动时间为t秒.
(1)填空:点C的坐标是(______,______),对角线OB的长度是_______cm;
(2)当a=1时,设△OPQ的面积为S,求S与t的函数关系式,并直接写出当t为何值时,S的值最大?
(3)当点P在OA边上,点Q在CB边上时,线段PQ与对角线OB交于点M.若以O、M、P为顶点的三角形与△OAB相似,求a与t的函数关系式,并直接写出t的取值范围.
【答案】解:(1)C(2,2),OB=4cm。
(2)①当0 0 )。
(1)连接DP ,经过1 秒后,四边形EQDP能够成为平行四边形吗?请说明理由;
(2)连接PQ ,在运动过程中,不论t 取何值时,总有线段PQ与线段AB平行。为什么?
(3)当t 为何值时,△EDQ为直角三角形。
【答案】解:(1)不能。理由如下:
假设经过t秒时四边形EQDP能够成为平行四边形。
∵点P的速度为1 厘米/秒,点Q 的速度为1 . 25 厘米/秒,
∴AP=t厘米,BQ=1.25t厘米。
又∵PE∥BC,∴△AEP∽△ADC。∴。
∵AC=4厘米,BC=5厘米,CD=3厘米,
∴,解得,EP=0.75t厘米。
又∵,
∴由EP=QD得,解得。
∴只有时四边形EQDP才能成为平行四边形。
∴经过1 秒后,四边形EQDP不能成为平行四边形。
(2)∵AP=t厘米,BQ=1.25t厘米,AC=4厘米,BC=5厘米,
∴。∴。
又∵∠C=∠C,∴△PQC∽△ABC。∴∠PQC=∠B。∴PQ∥AB。
∴在运动过程中,不论t 取何值时,总有线段PQ与线段AB平行。
(3)分两种情况讨论:
①当∠EQD=90°时,显然有EQ=PC=4-t,DQ=1.25t-2
又∵EQ∥AC,∴△EDQ∽△ADC。
∴,即,
解得。
②当∠QED=90°时,
∵∠CDA=∠EDQ,∠QED=∠C=90°,∴△EDQ∽△CDA。
∴。
Rt△EDQ斜边上的高为4-t,Rt△CDA斜边上的高为2.4,
∴,解得t =3.1。
综上所述,当t为2.5秒或3.1秒时,△EDQ为直角三角形。
【考点】动点问题,平行四边形的判定,相似三角形的判定和性质,平行的判定,直角三角形的判定。
【分析】(1)不能。应用相似三角形的判定和性质,得出只有时四边形EQDP才能成为平行四边形的结果,从而得出经过1 秒后,四边形EQDP不能成为平行四边形的结论。
(2)由△PQC∽△ABC得∠PQC=∠B,从而得到在运动过程中,不论t 取何值时,总有线段PQ与线段AB平行的结论。
(3)分∠EQD=90°和∠QED=90°两种情况讨论即可。
75. (2012黑龙江大庆8分) 已知半径为1cm的圆,在下面三个图中AC=10cm,AB=6cm,BC=8cm,在图2中∠ABC=90°.
(1)如图1,若将圆心由点A沿AC方向运动到点C,求圆扫过的区域面积;
(2)如图2,若将圆心由点A沿ABC方向运动到点C,求圆扫过的区域面积;
(3)如图3,若将圆心由点A沿ABCA方向运动回到点A.
则I)阴影部分面积为_ ___;Ⅱ)圆扫过的区域面积为__ __.
【答案】解:(1)由题意得,圆扫过的面积=DE×AC+πr2=(20+π)cm2。
(2)圆扫过的区域面积=AB的面积+BC的面积-一个圆的面积。
结合(1)的求解方法,可得所求面积
=(2r×AB+πr2)+(2r×BC+πr2)﹣πr2=2r(AB+BC)+πr2=(28+π)cm2。
(3)I) cm2;Ⅱ)(+π)cm2。
【考点】圆的综合题,运动问题,锐角三角函数定义。
【分析】(1)根据图形可得,圆扫过的面积等于一个长为AC,宽为直径的矩形面积,加上一个圆的面积,从而求解即可。
(2)根据(1)的计算方法,由点A沿A→B→C方向运动到点C,求圆扫过的区域面积,等于AB的面积+BC的面积﹣一个圆的面积。
(3)作出如下图形,利用解直角三角形的知识求出HE、HF、DN、MN,则可求出阴影部分的两条直角边,也可得出扫描后的面积:
由题意得,EF=2r=2cm,cm,
cm。
MD=2r=2cm,
cm,
cm。
故可得扫过的面积
=图2的面积+S△HEF+S△DMN+S矩形EFMD
=28+π+++=(+π)cm2。
阴影部分的两条直角边分别为:AB﹣r﹣HF=cm、AC﹣r﹣MN=cm,
故阴影部分的面积为:(cm2)。
76. (2012黑龙江哈尔滨10分)如图,在平面直角坐标系中,点0为坐标原点,直线y=2x+4交x轴于点A,交y轴于点B,四边形ABCO是平行四边形,直线y=-x+m经过点C,交x轴于点D.
(1)求m的值;
(2)点P(0,t)是线段OB上的一个动点(点P不与0,B两点重合),过点P作x轴的平行线,分别交AB,0c,DC于点E,F,G.设线段EG的长为d,求d与t之间的函数关系式(直接写出自变量t的取值范围); (3)在(2)的条件下,点H是线段OB上一点,连接BG交OC于点M,当以OG为直径的圆经过点M时,恰好使∠BFH=∠ABO.求此时t的值及点H的坐标.
【答案】解:(1)如图,过点C作CK⊥x轴于K,
∵y=2x+4交x轴和y轴于A,B,
∴A(-2,0)B(0,4)。∴OA=2,OB=4。
∵四边形ABCO是平行四边形,∴BC=OA=2 。
又∵四边形BOKC是矩形,
∴OK=BC=2,CK=OB=4。∴C(2,4)。
将C(2,4)代入y=-x+m得,4=-2+m,解得m=6。
(2)如图,延长DC交y轴于N,分别过点E,G作x轴的垂线 垂足分别是R,Q,则四边形ERQG、四边形POQG、四边形EROP是矩形。
∴ER=PO=CQ=1。
∵,即,∴AR=t。
∵y=-x+6交x轴和y轴于D,N,∴OD=ON=6。
∴∠ODN=45°。
∵,∴DQ=t。
又∵AD=AO+OD=2+6=8,∴EG=RQ=8-t-t=8-t。
∴d=-t+8(0<t<4)。
(3)如图,∵四边形ABCO是平行四边形,
∴AB∥OC。∴∠ABO=∠BOC。
∵BP=4-t,
∴。
∴EP=。
由(2)d=-t+8,∴PG=d-EP=6-t。
∵以OG为直径的圆经过点M,∴∠OMG=90°,∠MFG=∠PFO。∴∠BGP=∠BOC。
∴。∴,解得t=2。
∵∠BFH=∠ABO=∠BOC,∠OBF=∠FBH,∴△BHF∽△BFO。
∴,即BF2=BH•BO。
∵OP=2,∴PF=1,BP=2。∴。
∴=BH×4。∴BH=。∴HO=4-。
∴H(0,)。
【考点】一次函数综合题,直线上点的坐标与方程的关系,平行四边形和矩形的性质,平行的性质,锐角三角函数定义,勾股定理,圆周角定理,相似三角形的判定和性质。
【分析】(1)根据直线y=2x+4求出点A、B的坐标,从而得到OA、OB的长度,再根据平行四边形的对边相等求出BC的长度,过点C作CK⊥x轴于K,从而得到四边形BOKC是矩形,根据矩形的对边相等求出KC的长度,从而得到点C的坐标,然后把点C的坐标代入直线即可求出m的值。
(2)延长DC交y轴于N分别过点E,G作x轴的垂线 垂足分别是R,Q则四边形ERQG、四边形POQG、四边形EROP是矩形,再利用∠BAO的正切值求出AR的长度,利用∠ODN的正切值求出DQ的长度,再利用AD的长度减去AR的长度,再减去DQ的长度,计算即可得解。
(3)根据平行四边形的对边平行可得AB∥OC,再根据平行线内错角相等求出∠ABO=∠BOC,用t表示出BP,再根据∠ABO与∠BOC的正切值相等列式求出EP的长度,再表示出PG的长度,然后根据直径所对的圆周角是直角可得∠OMC=90°,根据直角推出∠BGP=∠BOC,再利用∠BGP与∠BOC的正切值相等列式求解即可得到t的值;先根据加的关系求出∠OBF=∠FBH,再判定△BHF和△BFO相似,根据相似三角形对应边成比例可得,再根据t=2求出OP=2,PF=1,BP=2,利用勾股定理求出BF的长度,代入数据进行计算即可求出BH的值,然后求出HO的值,从而得到点H的坐标。
77. (2012黑龙江黑河、齐齐哈尔、大兴安岭、鸡西10分)如图,在平面直角坐标系中,已知Rt△AOB的两条直角边0A、08分别在y轴和x轴上,并且OA、OB的长分别是方程x2—7x+12=0的两根(OA<0B),动点P从点A开始在线段AO上以每秒l个单位长度的速度向点O运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.
(1)求A、B两点的坐标。
(2)求当t为何值时,△APQ与△AOB相似,并直接写出此时点Q的坐标.
(3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.
【答案】解:(1)由x2-7 x +12=0解得x1=3,x2=4。
∵OA<OB ,∴OA=3 , OB=4。∴A(0,3), B(4,0)。
(2) 由OA=3 , OB=4,根据勾股定理,得AB=5。
由题意得,AP=t, AQ=5-2t 。分两种情况讨论:
①当∠APQ=∠AOB时,如图1,△APQ∽△AOB。
∴,即 解得 t= 。∴Q()。
②当∠AQP=∠AOB时,如图2, △APQ∽△ABO。
∴,即 解得 t= 。∴Q()。
(3)存在。M1(), M2(),M3()。
【考点】动点问题,解一元二次方程,勾股定理,相似三角形的性质,平行四边形的判定。
【分析】(1)解出一元二次方程,结合OA<OB即可求出A、B两点的坐标。
(2)分∠APQ=∠AOB和∠AQP=∠AOB两种情况讨论即可。
(3)当t=2时,如图,OP=2,BQ=4,∴P(0,1),Q()。
若以A、P、Q、M为顶点的四边形是平行四边形,则
①当AQ为对角线时,点M1的横坐标与点Q的横坐标相同,纵坐标为。∴M1()。
②当PQ为对角线时,点M2的横坐标与点Q的横坐标相同,纵坐标为。∴M2()。
③当AP为对角线时,点Q、M3关于AP的中点对称。
由A(0,3),P(0,1)得AP的中点坐标为(0,2)。
由Q()得M3的横坐标为,纵坐标为。∴M3()。
综上所述,若以A、P、Q、M为顶点的四边形是平行四边形,则M点的坐标为
()或()或()。
78. (2012黑龙江龙东地区10分)如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=12,点C的坐标为(-18,0)。
(1)求点B的坐标;
(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,OD=2BD,求直线DE的解析式;
(3)若点P是(2)中直线DE上的一个动点,在坐标平面内是否存在点Q,使以O、E、P、Q为顶点的
四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由。
【答案】解:(1)过点B作BF⊥x轴于F,
在Rt△BCF中
∵∠BCO=45°,BC=12,∴CF=BF=12 。
∵C 的坐标为(-18,0),∴AB=OF=6。
∴点B的坐标为(-6,12)。
(2)过点D作DG⊥y轴于点G,
∵OD=2BD,∴OD=OB。
∵AB∥DG,∴△ODG∽△OBA 。
∵,AB=6,OA=12,∴DG=4,OG=8。∴D(-4,8),E(0,4)。
设直线DE解析式为y=kx+b(k≠0)
∴ ,解得。∴直线DE解析式为y=-x+4。
(3)结论:存在。
点Q的坐标为:(2 ,-2 ),(-2 ,2 ),(4,4),(-2,2)。
【考点】一次函数综合题,等腰直角三角形判定和性质,相似三角形判定和性质,待定系数法,直线上点的坐标与方程的关系,菱形的判定和性质。
【分析】(1)构造等腰直角三角形BCF,求出BF、CF的长度,即可求出B点坐标。
(2)已知E点坐标,欲求直线DE的解析式,需要求出D点的坐标.构造△ODG∽△OBA,由线段比例关系求出D点坐标,从而可以求出直线DE的解析式。
(3)如图所示,符合题意的点Q有4个:
设直线y=-x+4分别与x轴、y轴交于点E、点F,
则E(0,4),F(4,0),OE=OF=4,EF=4。
①菱形OEP1Q1,此时OE为菱形一边。
则有P1E=P1Q1=OE=4,P1F=EF-P1E=4-4。
易知△P1NF为等腰直角三角形,
∴P1N=NF=P1F=4-2。
设P1Q1交x轴于点N,则NQ1=P1Q1-P1N=4-(4-2)=2。
又ON=OF-NF=2,∴Q1(2 ,-2)。
②菱形OEP2Q2,此时OE为菱形一边。此时Q2与Q1关于原点对称,∴Q2(-2,2)。
③菱形OEQ3P3,此时OE为菱形一边。
此时P3与点F重合,菱形OEQ3P3为正方形,∴Q3(4,4)。
④菱形OP4EQ4,此时OE为菱形对角线。
由菱形性质可知,P4Q4为OE的垂直平分线,
由OE=4,得P4纵坐标为2,代入直线解析式y=-x+4得横坐标为2,则P4(2,2)。
由菱形性质可知,P4、Q4关于OE或x轴对称,∴Q4(-2,2)。
综上所述,存在点Q,使以O、E、P、Q为顶点的四边形是菱形,点Q的坐标为:
Q1(2,-2),Q2(-2,2),Q3(4,4),Q4(-2,2)。