- 1.09 MB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
26.(河北省本小题满分12分)
某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.
若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y =x+150,
成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元)(利润 = 销售额-成本-广告费).
若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为
常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2 元的附加费,设月利润为w外(元)(利润 = 销售额-成本-附加费).
(1)当x = 1000时,y = 元/件,w内 = 元;
(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);
(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;
(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?
参考公式:抛物线的顶点坐标是.
解:(1)140 57500;
(2)w内 = x(y -20)- 62500 = x2+130 x,
w外 = x2+(150)x.
(3)当x = = 6500时,w内最大;分
由题意得 ,
解得a1 = 30,a2 = 270(不合题意,舍去).所以 a = 30.
(4)当x = 5000时,w内 = 337500, w外 =.
若w内 < w外,则a<32.5;
若w内 = w外,则a = 32.5;
若w内 > w外,则a>32.5.
所以,当10≤ a <32.5时,选择在国外销售;
当a = 32.5时,在国外和国内销售都一样;
当32.5< a ≤40时,选择在国内销售.
23. (德州市本题满分11分)
已知二次函数的图象经过点A(3,0),B(2,-3),C(0,-3).
(1)求此函数的解析式及图象的对称轴;
(2)点P从B点出发以每秒0.1个单位的速度沿线段BC向C点运动,点Q从O点出发以相同的速度沿线段OA向A点运动,其中一个动点到达端点时,另一个也随之停止运动.设运动时间为t秒.
①当t为何值时,四边形ABPQ为等腰梯形;
x
y
O
A
B
C
P
Q
D
E
G
M
N
F
x
y
O
A
B
C
P
Q
M
N
第23题图
②设PQ与对称轴的交点为M,过M点作x轴的平行线交AB于点N,设四边形ANPQ的面积为S,求面积S关于时间t的函数解析式,并指出t的取值范围;当t为何值时,S有最大值或最小值.
解:(1)∵二次函数的图象经过点C(0,-3),
∴c =-3.
将点A(3,0),B(2,-3)代入得
解得:a=1,b=-2.
∴.-------------------2分
配方得:,所以对称轴为x=1.-------------------3分
(2) 由题意可知:BP= OQ=0.1t.
∵点B,点C的纵坐标相等,
∴BC∥OA.
过点B,点P作BD⊥OA,PE⊥OA,垂足分别为D,E.
要使四边形ABPQ为等腰梯形,只需PQ=AB.
即QE=AD=1.
又QE=OE-OQ=(2-0.1t)-0.1t=2-0.2t,
∴2-0.2t=1.
解得t=5.
即t=5秒时,四边形ABPQ为等腰梯形.-------------------6分
②设对称轴与BC,x轴的交点分别为F,G.
∵对称轴x=1是线段BC的垂直平分线,
∴BF=CF=OG=1.
又∵BP=OQ,
∴PF=QG.
又∵∠PMF=∠QMG,
∴△MFP≌△MGQ.
∴MF=MG.
∴点M为FG的中点 -------------------8分
∴S=,
=.
由=.
.
∴S=.-------------------10分
又BC=2,OA=3,
∴点P运动到点C时停止运动,需要20秒.
∴04.8,x<12,所以.
因此△ABC与正方形DEFG重叠部分的面积为
(0< x≤4.8)
……………………8分
当≤4.8时,△ABC与正方形DEFG重叠部分的面积的最大值为4.82=23.04
当时,因为,所以当时,
△ABC与正方形DEFG重叠部分的面积的最大值为.
因为24>23.04,
所以△ABC与正方形DEFG重叠部分的面积的最大值为24. …10分
C
E
D
G
A
x
y
O
B
F
25.(绵阳市)如图,抛物线y = ax2 + bx + 4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G.
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长;
(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,
△EFK的面积最大?并求出最大面积.
解:(1)由题意,得 解得,b =-1.
所以抛物线的解析式为,顶点D的坐标为(-1,).
(2)设抛物线的对称轴与x轴交于点M.因为EF垂直平分BC,即C关于直线EG的对称点为B,连结BD交于EF于一点,则这一点为所求点H,使DH + CH最小,即最小为
DH + CH = DH + HB = BD =. 而 .
∴ △CDH的周长最小值为CD + DR + CH =.
设直线BD的解析式为y = k1x + b,则 解得 ,b1 = 3.
所以直线BD的解析式为y =x + 3.
由于BC = 2,CE = BC∕2 =,Rt△CEG∽△COB,
得 CE : CO = CG : CB,所以 CG = 2.5,GO = 1.5.G(0,1.5).
同理可求得直线EF的解析式为y =x +.
联立直线BD与EF的方程,解得使△CDH的周长最小的点H(,).
(3)设K(t,),xF<t<xE.过K作x轴的垂线交EF于N.
则 KN = yK-yN =-(t +)=.
所以 S△EFK = S△KFN + S△KNE =KN(t + 3)+KN(1-t)= 2KN = -t2-3t + 5 =-(t +)2 +.
即当t =-时,△EFK的面积最大,最大面积为,此时K(-,).
26.(钦州市本题满分10分)
如图,将OA = 6,AB = 4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.
(1)点B的坐标为 ▲ ;用含t的式子表示点P的坐标为 ▲ ;(3分)
(2)记△OMP的面积为S,求S与t的函数关系式(0 < t < 6);并求t为何值时,S有最大值?(4分)
(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的?若存在,求出点T的坐标;若不存在,请说明理由.(3分)
解:(1)(6,4);().(其中写对B点得1分) 3分
(2)∵S△OMP =×OM×, 4分
∴S =×(6 -t)×=+2t.
=(0 < t <6). 6分
∴当时,S有最大值. 7分
(3)存在.
由(2)得:当S有最大值时,点M、N的坐标分别为:M(3,0),N(3,4),
则直线ON的函数关系式为:.
(备用图)
R2
T1
T2
R1
D2
D1
设点T的坐标为(0,b),则直线MT的函数关系式为:,
解方程组得
∴直线ON与MT的交点R的坐标为.
∵S△OCN =×4×3=6,∴S△ORT = S△OCN =2. 8分
① 当点T在点O、C之间时,分割出的三角形是△OR1T1,如图,作R1D1⊥y轴,D1为垂足,则S△OR1T1=••••RD1•OT =••b=2.
∴, b =.
∴b1 =,b2 =(不合题意,舍去)
此时点T1的坐标为(0,). 9分
② 当点T在OC的延长线上时,分割出的三角形是△R2NE,如图,设MT交CN于点E,由①得点E的横坐标为,作R2D2⊥CN交CN于点D2,则
S△R2NE=•EN•R2D2 =••=2.
∴,b=.
∴b1=,b2=(不合题意,舍去).
∴此时点T2的坐标为(0,).
综上所述,在y轴上存在点T1(0,),T2(0,)符合条件.…10分
26.( 福建省南平市14分)如图1,已知点B(1,3)、C(1,0),直线y=x+k经过点B,且与x轴交于点A,将△ABC沿直线AB折叠得到△ABD.
(1)填空:A点坐标为(____,____),D点坐标为(____,____);
(2)若抛物线y= x2+bx+c经过C、D两点,求抛物线的解析式;
(3)将(2)中的抛物线沿y轴向上平移,设平移后所得抛物线与y轴交点为E,点M是平移后的抛物线与直线AB的公共点,在抛物线平移过程中是否存在某一位置使得直线EM∥x轴.若存在,此时抛物线向上平移了几个单位?若不存在,请说明理由.
(提示:抛物线y=ax2+bx+c(a≠0)的对称轴是x=-,顶点坐标是(-,)
O
y
x
A
D
B
C
图1
O
y
x
A
B
C
备用图
·
解:(1) A(-2,0) ,D(-2,3)
(2)∵抛物线y= x2+bx+c 经过C(1,0), D(-2,3)
代入,解得:b=- ,c=
∴ 所求抛物线解析式为:y= x2 - x+
17. 答:存在
解法一: 设抛物线向上平移H个单位能使EM∥x轴,
则平移后的解析式为:y= x2 - x++h =(x -1)² + h
此时抛物线与y轴交点E(0,+h)
当点M在直线y=x+2上,且满足直线EM∥x轴时
则点M的坐标为()
又 ∵M在平移后的抛物线上,则有
+h=(h--1)²+h
解得: h= 或 h=
(і)当 h= 时,点E(0,2),点M的坐标为(0,2)此时,点E,M重合,不合题意舍去。
(ii)当 h=时,E(0,4)点M的坐标为(2,4)符合题意
综合(i)(ii)可知,抛物线向上平移个单位能使EM∥x轴。
解法二:∵当点M在抛物线对称轴的左侧或在抛物线的顶点时,仅当M,E重合时,它们的纵坐标相等。
∴EM不会与x轴平行
当点M在抛物线的右侧时,设抛物线向上平移H个单位能使EM∥x轴
则平移后的抛物线的解析式为∵y=x²++h =(x - 1)² + h
∴ 抛物线与Y轴交点E(0,+h)
∵抛物线的对称轴为:x=1
根据抛物线的对称性,可知点M的坐标为(2,+h)时,直线EM∥x轴
将(2,+h)代入y=x+2得,+h=2+2 解得:h=
∴ 抛物线向上平移个单位能使EM∥x轴
26. (河池市 本小题满分12分)
如图11,在直角梯形中,∥,,点为坐标原点,点在轴的正半轴上,对角线,相交于点,,.
(1)线段的长为 ,点的坐标为 ;
M
C
B
O
A
图11
(2)求△的面积;
(3)求过,,三点的抛物线的解析式;
(4)若点在(3)的抛物线的对称轴上,点为该
抛物线上的点,且以,,,四点为顶点的四边形
为平行四边形,求点的坐标.
M
C
B
O
A
D
解:(1)4 ;. …………………(2分)
(2)在直角梯形OABC中,OA=AB=4,
∵ ∥ ∴ △OAM∽△BCM ………(3分)
又 ∵ OA=2BC
∴ AM=2CM ,CM=AC ………………(4分)
所以 ………(5分)
(注:另有其它解法同样可得结果,正确得本小题满分.)
(3)设抛物线的解析式为
由抛物线的图象经过点,,.所以
……………………………(6分)
解这个方程组,得,, ………………(7分)
所以抛物线的解析式为 ………………(8分)
(4)∵ 抛物线的对称轴是CD,
① 当点E在轴的下方时,CE和OA互相平分则可知四边形OEAC为平行四边形,此时点F和点C重合,点F的坐标即为点; …(9分)
② 当点E在轴的下方,点F在对称轴的右侧,存在平行四边形,
∥,且,此时点F的横坐标为6,将代入,可得.所以. ………………………………………(11分)
同理,点F在对称轴的左侧,存在平行四边形,∥,且,此时点F的横坐标为,将代入,可得.所以.(12分)
综上所述,点F的坐标为,. ………(12分)