• 439.50 KB
  • 2021-05-10 发布

衡阳市中考数学试卷含解析

  • 30页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2018年衡阳市中考数学试卷 ‎ ‎ 一、选择题(本题共12小题,每小题3分,共36分)‎ ‎1.(3.00分)﹣4的相反数是(  )‎ A.4 B.﹣4 C.﹣ D.‎ ‎2.(3.00分)2018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为(  )‎ A.18×108 B.1.8×108 C.1.8×109 D.0.18×1010‎ ‎3.(3.00分)下列生态环保标志中,是中心对称图形的是(  )‎ A. B. C. D.‎ ‎4.(3.00分)如图是由5个大小相同的小正方体摆成的立体图形,它的主视图是(  )‎ A. B. C. D.‎ ‎5.(3.00分)已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是(  )‎ A.连续抛一枚均匀硬币2次必有1次正面朝上 B.连续抛一枚均匀硬币10次都可能正面朝上 C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次 D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的 ‎6.(3.00分)下列各式中正确的是(  )‎ A.=±3 B.=﹣3 C.=3 D.﹣=‎ ‎7.(3.00分)下面运算结果为a6的是(  )‎ A.a3+a3 B.a8÷a2 C.a2•a3 D.(﹣a2)3‎ ‎8.(3.00分)衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为(  )‎ A.﹣=10 B.﹣=10‎ C.﹣=10 D.+=10‎ ‎9.(3.00分)下列命题是假命题的是(  )‎ A.正五边形的内角和为540°‎ B.矩形的对角线相等 C.对角线互相垂直的四边形是菱形 D.圆内接四边形的对角互补 ‎10.(3.00分)不等式组的解集在数轴上表示正确的是(  )‎ A. B. C. D.‎ ‎11.(3.00分)对于反比例函数y=﹣,下列说法不正确的是(  )‎ A.图象分布在第二、四象限 B.当x>0时,y随x的增大而增大 C.图象经过点(1,﹣2)‎ D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2‎ ‎12.(3.00分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②﹣1≤a≤﹣;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为(  )‎ A.1个 B.2个 C.3个 D.4个 ‎ ‎ 二、填空题(本题共6小题,每小题3分,共18分)‎ ‎13.(3.00分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按顺时针方向旋转而得到的,则旋转的角度为   .‎ ‎14.(3.00分)某公司有10名工作人员,他们的月工资情况如表,根据表中信息,该公司工作人员的月工资的众数是   .‎ 职务 经理 副经理 A类职员 B类职员 C类职员 人数 ‎1‎ ‎2‎ ‎2‎ ‎4‎ ‎4‎ 月工资(万元/人)‎ ‎2‎ ‎1.2‎ ‎0.8‎ ‎0.6‎ ‎0.4‎ ‎15.(3.00分)计算:=   .‎ ‎16.(3.00分)将一副三角板如图放置,使点A落在DE上,若BC∥DE,则∠AFC的度数为   .‎ ‎17.(3.00分)如图,▱ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M.如果△CDM的周长为8,那么▱ABCD的周长是   .‎ ‎18.(3.00分)如图,在平面直角坐标系中,函数y=x和y=﹣x的图象分别为直线l1,l2,过点A1(1,﹣)作x轴的垂线交11于点A2,过点A2作y轴的垂线交l2于点A3,过点A3作x轴的垂线交l1于点A4,过点A4作y轴的垂线交l2于点A5,…依次进行下去,则点A2018的横坐标为   .‎ ‎ ‎ 三、解答题(本题共8个小题,19-20题每题6分,21-24题每题8分,25题10分,26题12分)‎ ‎19.(6.00分)先化简,再求值:(x+2)(x﹣2)+x(1﹣x),其中x=﹣1.‎ ‎20.(6.00分)如图,已知线段AC,BD相交于点E,AE=DE,BE=CE.‎ ‎(1)求证:△ABE≌△DCE;‎ ‎(2)当AB=5时,求CD的长.‎ ‎21.(8.00分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,根据测试成绩(成绩都不低于50分)绘制出如图所示的部分频数分布直方图.‎ 请根据图中信息完成下列各题.‎ ‎(1)将频数分布直方图补充完整人数;‎ ‎(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少;‎ ‎(3)现将从包括小明和小强在内的4名成绩优异的同学中随机选取两名参加市级比赛,求小明与小强同时被选中的概率.‎ ‎22.(8.00分)一名徒步爱好者来衡阳旅行,他从宾馆C出发,沿北偏东30°的方向行走2000米到达石鼓书院A处,参观后又从A处沿正南方向行走一段距离,到达位于宾馆南偏东45°方向的雁峰公园B处,如图所示.‎ ‎(1)求这名徒步爱好者从石鼓书院走到雁峰公园的途中与宾馆之间的最短距离;‎ ‎(2)若这名徒步爱好者以100米/分的速度从雁峰公园返回宾馆,那么他在15分钟内能否到达宾馆?‎ ‎23.(8.00分)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC分别交AC、AB的延长线于点E、F.‎ ‎(1)求证:EF是⊙O的切线;‎ ‎(2)若AC=4,CE=2,求的长度.(结果保留π)‎ ‎24.(8.00分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.‎ ‎(1)求y与x之间的函数关系式,并写出自变量x的取值范围;‎ ‎(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?‎ ‎25.(10.00分)如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.‎ ‎(1)若抛物线的解析式为y=﹣2x2+2x+4,设其顶点为M,其对称轴交AB于点N.‎ ‎①求点M、N的坐标;‎ ‎②是否存在点P,使四边形MNPD为菱形?并说明理由;‎ ‎(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.‎ ‎26.(12.00分)如图,在Rt△ABC中,∠C=90°,AC=BC=4cm,动点P从点C出发以1cm/s的速度沿CA匀速运动,同时动点Q从点A出发以cm/s的速度沿AB匀速运动,当点P到达点A时,点P、Q同时停止运动,设运动时间为t(s).‎ ‎(1)当t为何值时,点B在线段PQ的垂直平分线上?‎ ‎(2)是否存在某一时刻t,使△APQ是以PQ为腰的等腰三角形?若存在,求出t的值;若不存在,请说明理由;‎ ‎(3)以PC为边,往CB方向作正方形CPMN,设四边形QNCP的面积为S,求S关于t的函数关系式.‎ ‎ ‎ ‎2018年湖南省衡阳市中考数学试卷 参考答案与试题解析 ‎ ‎ 一、选择题(本题共12小题,每小题3分,共36分)‎ ‎1.(3.00分)﹣4的相反数是(  )‎ A.4 B.﹣4 C.﹣ D.‎ ‎【分析】根据只有符号不同的两个数互为相反数,0的相反数是0即可求解.‎ ‎【解答】解:﹣4的相反数是4.‎ 故选:A.‎ ‎【点评】此题主要考查相反数的意义,解决本题的关键是熟记相反数的定义.‎ ‎ ‎ ‎2.(3.00分)2018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为(  )‎ A.18×108 B.1.8×108 C.1.8×109 D.0.18×1010‎ ‎【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.‎ ‎【解答】解:1800000000=1.8×109,‎ 故选:C.‎ ‎【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.‎ ‎ ‎ ‎3.(3.00分)下列生态环保标志中,是中心对称图形的是(  )‎ A. B. C. D.‎ ‎【分析】根据中心对称图形的定义对各选项分析判断即可得解.‎ ‎【解答】解:A、不是中心对称图形,故本选项错误;‎ B、是中心对称图形,故本选项正确;‎ C、不是中心对称图形,故本选项错误;‎ D、不是中心对称图形,故本选项错误.‎ 故选:B.‎ ‎【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.‎ ‎ ‎ ‎4.(3.00分)如图是由5个大小相同的小正方体摆成的立体图形,它的主视图是(  )‎ A. B. C. D.‎ ‎【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.‎ ‎【解答】解:从正面看易得第一层有3个正方形,第二层有1个正方形,且位于中间.‎ 故选:A.‎ ‎【点评】本题考查了三视图的知识,属于基础题,注意掌握主视图是从物体的正面看得到的视图,难度一般.‎ ‎ ‎ ‎5.(3.00分)已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是(  )‎ A.连续抛一枚均匀硬币2次必有1次正面朝上 B.连续抛一枚均匀硬币10次都可能正面朝上 C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次 D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的 ‎【分析】根据概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.‎ ‎【解答】解:A、连续抛一均匀硬币2次必有1次正面朝上,不正确,有可能两次都正面朝上,也可能都反面朝上,故此选项错误;‎ B、连续抛一均匀硬币10次都可能正面朝上,是一个随机事件,有可能发生,故此选项正确;‎ C、大量反复抛一均匀硬币,平均100次出现正面朝上50次,也有可能发生,故此选项正确;‎ D、通过抛一均匀硬币确定谁先发球的比赛规则是公平的,概率均为,故此选项正确.‎ 故选:A.‎ ‎【点评】此题主要考查了概率的意义,关键是弄清随机事件和必然事件的概念的区别.‎ ‎ ‎ ‎6.(3.00分)下列各式中正确的是(  )‎ A.=±3 B.=﹣3 C.=3 D.﹣=‎ ‎【分析】原式利用平方根、立方根定义计算即可求出值.‎ ‎【解答】解:A、原式=3,不符合题意;‎ B、原式=|﹣3|=3,不符合题意;‎ C、原式不能化简,不符合题意;‎ D、原式=2﹣=,符合题意,‎ 故选:D.‎ ‎【点评】此题考查了立方根,以及算术平方根,熟练掌握各自的性质是解本题的关键.‎ ‎ ‎ ‎7.(3.00分)下面运算结果为a6的是(  )‎ A.a3+a3 B.a8÷a2 C.a2•a3 D.(﹣a2)3‎ ‎【分析】根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断.‎ ‎【解答】解:A、a3+a3=2a3,此选项不符合题意;‎ B、a8÷a2=a6,此选项符合题意;‎ C、a2•a3=a5,此选项不符合题意;‎ D、(﹣a2)3=﹣a6,此选项不符合题意;‎ 故选:B.‎ ‎【点评】本题主要考查整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方.‎ ‎ ‎ ‎8.(3.00分)衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为(  )‎ A.﹣=10 B.﹣=10‎ C.﹣=10 D.+=10‎ ‎【分析】根据题意可得等量关系:原计划种植的亩数﹣改良后种植的亩数=10亩,根据等量关系列出方程即可.‎ ‎【解答】解:设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,‎ 根据题意列方程为:﹣=10.‎ 故选:A.‎ ‎【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.‎ ‎ ‎ ‎9.(3.00分)下列命题是假命题的是(  )‎ A.正五边形的内角和为540°‎ B.矩形的对角线相等 C.对角线互相垂直的四边形是菱形 D.圆内接四边形的对角互补 ‎【分析】根据正多边形的内角和的计算公式、矩形的性质、菱形的判定、圆内接四边形的性质判断即可.‎ ‎【解答】解:正五边形的内角和=(5﹣2)×180°=540°,A是真命题;‎ 矩形的对角线相等,B是真命题;‎ 对角线互相垂直的平行四边形是菱形,C是假命题;‎ 圆内接四边形的对角互补,D是真命题;‎ 故选:C.‎ ‎【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.‎ ‎ ‎ ‎10.(3.00分)不等式组的解集在数轴上表示正确的是(  )‎ A. B. C. D.‎ ‎【分析】分别解两个不等式得到x>﹣1和x≤3,从而得到不等式组的解集为﹣1<x≤3,然后利用此解集对各选项进行判断.‎ ‎【解答】解:,‎ 解①得x>﹣1,‎ 解②得x≤3,‎ 所以不等式组的解集为﹣1<x≤3.‎ 故选:C.‎ ‎【点评】‎ 本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.‎ ‎ ‎ ‎11.(3.00分)对于反比例函数y=﹣,下列说法不正确的是(  )‎ A.图象分布在第二、四象限 B.当x>0时,y随x的增大而增大 C.图象经过点(1,﹣2)‎ D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2‎ ‎【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.‎ ‎【解答】解:A、k=﹣2<0,∴它的图象在第二、四象限,故本选项正确;‎ B、k=﹣2<0,当x>0时,y随x的增大而增大,故本选项正确;‎ C、∵﹣=﹣2,∴点(1,﹣2)在它的图象上,故本选项正确;‎ D、点A(x1,y1)、B(x2、y2)都在反比例函数y=﹣的图象上,若x1<x2<0,则y1<y2,故本选项错误.‎ 故选:D.‎ ‎【点评】本题考查了反比例函数的性质,对于反比例函数y=(k≠0),(1)k>0,反比例函数图象在一、三象限,在每一个象限内,y随x的增大而减小;(2)k<0,反比例函数图象在第二、四象限内,在每一个象限内,y随x的增大而增大.‎ ‎ ‎ ‎12.(3.00分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②﹣1≤a≤﹣;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为(  )‎ A.1个 B.2个 C.3个 D.4个 ‎【分析】利用抛物线开口方向得到a<0,再由抛物线的对称轴方程得到b=﹣2a,则3a+b=a,于是可对①进行判断;利用2≤c≤3和c=﹣3a可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax2+bx+c与直线y=n﹣1有两个交点可对④进行判断.‎ ‎【解答】解:∵抛物线开口向下,‎ ‎∴a<0,‎ 而抛物线的对称轴为直线x=﹣=1,即b=﹣2a,‎ ‎∴3a+b=3a﹣2a=a<0,所以①正确;‎ ‎∵2≤c≤3,‎ 而c=﹣3a,‎ ‎∴2≤﹣3a≤3,‎ ‎∴﹣1≤a≤﹣,所以②正确;‎ ‎∵抛物线的顶点坐标(1,n),‎ ‎∴x=1时,二次函数值有最大值n,‎ ‎∴a+b+c≥am2+bm+c,‎ 即a+b≥am2+bm,所以③正确;‎ ‎∵抛物线的顶点坐标(1,n),‎ ‎∴抛物线y=ax2+bx+c与直线y=n﹣1有两个交点,‎ ‎∴关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.‎ 故选:D.‎ ‎【点评】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左; 当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.‎ ‎ ‎ 二、填空题(本题共6小题,每小题3分,共18分)‎ ‎13.(3.00分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按顺时针方向旋转而得到的,则旋转的角度为 90° .‎ ‎【分析】由△COD是由△AOB绕点O按顺时针方向旋转而得到,再结合已知图形可知旋转的角度是∠BOD的大小,然后由图形即可求得答案.‎ ‎【解答】解:∵△COD是由△AOB绕点O按顺时针方向旋转而得,‎ ‎∴OB=OD,‎ ‎∴旋转的角度是∠BOD的大小,‎ ‎∵∠BOD=90°,‎ ‎∴旋转的角度为90°.‎ 故答案为:90°.‎ ‎【点评】此题考查了旋转的性质.解此题的关键是理解△COD是由△AOB绕点O按顺时针方向旋转而得的含义,找到旋转角.‎ ‎ ‎ ‎14.(3.00分)某公司有10名工作人员,他们的月工资情况如表,根据表中信息,该公司工作人员的月工资的众数是 0.6万元、0.4万元 .‎ 职务 经理 副经理 A类职员 B类职员 C类职员 人数 ‎1‎ ‎2‎ ‎2‎ ‎4‎ ‎4‎ 月工资(万元/人)‎ ‎2‎ ‎1.2‎ ‎0.8‎ ‎0.6‎ ‎0.4‎ ‎【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.‎ ‎【解答】解:由表可知0.6万元和0.4万元出现次数最多,有4次,‎ 所以该公司工作人员的月工资的众数是0.6万元和0.4万元,‎ 故答案为:0.6万元、0.4万元.‎ ‎【点评】本题主要考查众数,解题的关键是掌握众数的定义:众数是指一组数据中出现次数最多的数据.‎ ‎ ‎ ‎15.(3.00分)计算:= x﹣1 .‎ ‎【分析】根据同分母分式的加减,分母不变,只把分子相加减,计算求解即可.‎ ‎【解答】解:‎ ‎=‎ ‎=x﹣1.‎ 故答案为:x﹣1.‎ ‎【点评】本题比较容易,考查同分母分式的加减运算,一定注意最后结果能约分的一定要约分.‎ ‎ ‎ ‎16.(3.00分)将一副三角板如图放置,使点A落在DE上,若BC∥DE,则∠AFC的度数为 75° .‎ ‎【分析】先根据BC∥DE及三角板的度数求出∠‎ EAB的度数,再根据三角形内角与外角的性质即可求出∠AFC的度数.‎ ‎【解答】解:∵BC∥DE,△ABC为等腰直角三角形,‎ ‎∴∠FBC=∠EAB=(180°﹣90°)=45°,‎ ‎∵∠AFC是△AEF的外角,‎ ‎∴∠AFC=∠FAE+∠E=45°+30°=75°.‎ 故答案为:75°.‎ ‎【点评】本题考查的是平行线的性质及三角形内角与外角的关系,解题时注意:两直线平行,内错角相等.‎ ‎ ‎ ‎17.(3.00分)如图,▱ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M.如果△CDM的周长为8,那么▱ABCD的周长是 16 .‎ ‎【分析】根据题意,OM垂直平分AC,所以MC=MA,因此△CDM的周长=AD+CD,可得平行四边形ABCD的周长.‎ ‎【解答】解:∵ABCD是平行四边形,‎ ‎∴OA=OC,‎ ‎∵OM⊥AC,‎ ‎∴AM=MC.‎ ‎∴△CDM的周长=AD+CD=8,‎ ‎∴平行四边形ABCD的周长是2×8=16.‎ 故答案为16.‎ ‎【点评】此题考查了平行四边形的性质及周长的计算,根据线段垂直平分线的性质,证得AM=MC是解题的关键.‎ ‎ ‎ ‎18.(3.00分)如图,在平面直角坐标系中,函数y=x和y=﹣x的图象分别为直线l1,l2,过点A1(1,﹣)作x轴的垂线交11于点A2,过点A2‎ 作y轴的垂线交l2于点A3,过点A3作x轴的垂线交l1于点A4,过点A4作y轴的垂线交l2于点A5,…依次进行下去,则点A2018的横坐标为 21008 .‎ ‎【分析】根据题意可以发现题目中各点的坐标变化规律,从而可以解答本题.‎ ‎【解答】解:由题意可得,‎ A1(1,﹣),A2(1,1),A3(﹣2,1),A4(﹣2,﹣2),A5(4,﹣2),…,‎ ‎∵2018÷4=504…2,2018÷2=1009,‎ ‎∴点A2018的横坐标为:21008,‎ 故答案为:21008.‎ ‎【点评】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,找出题目中点的横坐标的变化规律.‎ ‎ ‎ 三、解答题(本题共8个小题,19-20题每题6分,21-24题每题8分,25题10分,26题12分)‎ ‎19.(6.00分)先化简,再求值:(x+2)(x﹣2)+x(1﹣x),其中x=﹣1.‎ ‎【分析】原式利用平方差公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.‎ ‎【解答】解:原式=x2﹣4+x﹣x2=x﹣4,‎ 当x=﹣1时,原式=﹣5.‎ ‎【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.‎ ‎ ‎ ‎20.(6.00分)如图,已知线段AC,BD相交于点E,AE=DE,BE=CE.‎ ‎(1)求证:△ABE≌△DCE;‎ ‎(2)当AB=5时,求CD的长.‎ ‎【分析】(1)根据AE=DE,BE=CE,∠AEB和∠DEC是对顶角,利用SAS证明△AEB≌△DEC即可.‎ ‎(2)根据全等三角形的性质即可解决问题.‎ ‎【解答】(1)证明:在△AEB和△DEC中,‎ ‎,‎ ‎∴△AEB≌△DEC(SAS).‎ ‎(2)解:∵△AEB≌△DEC,‎ ‎∴AB=CD,‎ ‎∵AB=5,‎ ‎∴CD=5.‎ ‎【点评】此题主要考查学生对全等三角形的判定与性质这一知识点的理解和掌握,此题难度不大,要求学生应熟练掌握.‎ ‎ ‎ ‎21.(8.00分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,根据测试成绩(成绩都不低于50分)绘制出如图所示的部分频数分布直方图.‎ 请根据图中信息完成下列各题.‎ ‎(1)将频数分布直方图补充完整人数;‎ ‎(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少;‎ ‎(3)现将从包括小明和小强在内的4名成绩优异的同学中随机选取两名参加市级比赛,求小明与小强同时被选中的概率.‎ ‎【分析】(1)根据各组频数之和等于总数可得70~80分的人数,据此即可补全直方图;‎ ‎(2)用成绩大于或等于80分的人数除以总人数可得;‎ ‎(3)列出所有等可能结果,再根据概率公式求解可得.‎ ‎【解答】解:(1)70到80分的人数为50﹣(4+8+15+12)=11人,‎ 补全频数分布直方图如下:‎ ‎(2)本次测试的优秀率是×100%=54%;‎ ‎(3)设小明和小强分别为A、B,另外两名学生为:C、D,‎ 则所有的可能性为:AB、AC、AD、BC、BD、CD,‎ 所以小明与小强同时被选中的概率为.‎ ‎【点评】本题考查了频数分布表、频数分布直方图,解题的关键是明确题意,找出所求问题需要的条件,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查了列表法和画树状图求概率.‎ ‎ ‎ ‎22.(8.00分)一名徒步爱好者来衡阳旅行,他从宾馆C出发,沿北偏东30°的方向行走2000米到达石鼓书院A处,参观后又从A处沿正南方向行走一段距离,到达位于宾馆南偏东45°方向的雁峰公园B处,如图所示.‎ ‎(1)求这名徒步爱好者从石鼓书院走到雁峰公园的途中与宾馆之间的最短距离;‎ ‎(2)若这名徒步爱好者以100米/分的速度从雁峰公园返回宾馆,那么他在15分钟内能否到达宾馆?‎ ‎【分析】(1)作CP⊥AB于P,解Rt△PAC,即可求得PC的长;‎ ‎(2)在Rt△PBC中,PC=1000,∠PBC=∠BPC=45°,则BC可求出,再根据时间=路程÷速度求出他到达宾馆需要的时间,与15分钟比较即可.‎ ‎【解答】解:(1)作CP⊥AB于P,‎ 由题意可得出:∠A=30°,AP=2000米,‎ 则CP=AC=1000米;‎ ‎(2)∵在Rt△PBC中,PC=1000,∠PBC=∠BPC=45°,‎ ‎∴BC=PC=1000米.‎ ‎∵这名徒步爱好者以100米/分的速度从雁峰公园返回宾馆,‎ ‎∴他到达宾馆需要的时间为=10<15,‎ ‎∴他在15分钟内能到达宾馆.‎ ‎【点评】本题考查了解直角三角形的应用﹣方向角问题,解直角三角形,锐角三角函数等知识.解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.‎ ‎ ‎ ‎23.(8.00分)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC分别交AC、AB的延长线于点E、F.‎ ‎(1)求证:EF是⊙O的切线;‎ ‎(2)若AC=4,CE=2,求的长度.(结果保留π)‎ ‎【分析】(1)连接OD,由OA=OD知∠OAD=∠ODA,由AD平分∠EAF知∠DAE=∠DAO,据此可得∠DAE=∠ADO,继而知OD∥AE,根据AE⊥EF即可得证;‎ ‎(2)作OG⊥AE,知AG=CG=AC=2,证四边形ODEG是矩形得OA=OB=OD=CG+CE=4,再证△ADE∽△ABD得AD2=48,据此得出BD的长及∠BAD的度数,利用弧长公式可得答案.‎ ‎【解答】解:(1)如图,连接OD,‎ ‎∵OA=OD,‎ ‎∴∠OAD=∠ODA,‎ ‎∵AD平分∠EAF,‎ ‎∴∠DAE=∠DAO,‎ ‎∴∠DAE=∠ADO,‎ ‎∴OD∥AE,‎ ‎∵AE⊥EF,‎ ‎∴OD⊥EF,‎ ‎∴EF是⊙O的切线;‎ ‎(2)如图,作OG⊥AE于点G,连接BD,‎ 则AG=CG=AC=2,∠OGE=∠E=∠ODE=90°,‎ ‎∴四边形ODEG是矩形,‎ ‎∴OA=OB=OD=CG+CE=2+2=4,∠DOG=90°,‎ ‎∵∠DAE=∠BAD,∠AED=∠ADB=90°,‎ ‎∴△ADE∽△ABD,‎ ‎∴=,即=,‎ ‎∴AD2=48,‎ 在Rt△ABD中,BD==4,‎ 在Rt△ABD中,∵AB=2BD,‎ ‎∴∠BAD=30°,‎ ‎∴∠BOD=60°,‎ 则的长度为=.‎ ‎【点评】‎ 本题考查切线的判定与性质,解题的关键是掌握切线的判定与性质、矩形的判定与性质、垂径定理、弧长公式等知识点.‎ ‎ ‎ ‎24.(8.00分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.‎ ‎(1)求y与x之间的函数关系式,并写出自变量x的取值范围;‎ ‎(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?‎ ‎【分析】(1)利用待定系数法求解可得y关于x的函数解析式;‎ ‎(2)根据“总利润=每件的利润×销售量”可得函数解析式,将其配方成顶点式,利用二次函数的性质进一步求解可得.‎ ‎【解答】解:(1)设y与x的函数解析式为y=kx+b,‎ 将(10,30)、(16,24)代入,得:,‎ 解得:,‎ 所以y与x的函数解析式为y=﹣x+40(10≤x≤16);‎ ‎(2)根据题意知,W=(x﹣10)y ‎=(x﹣10)(﹣x+40)‎ ‎=﹣x2+50x﹣400‎ ‎=﹣(x﹣25)2+225,‎ ‎∵a=﹣1<0,‎ ‎∴当x<25时,W随x的增大而增大,‎ ‎∵10≤x≤16,‎ ‎∴当x=16时,W取得最大值,最大值为144,‎ 答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.‎ ‎【点评】本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据相等关系列出二次函数解析式及二次函数的性质.‎ ‎ ‎ ‎25.(10.00分)如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.‎ ‎(1)若抛物线的解析式为y=﹣2x2+2x+4,设其顶点为M,其对称轴交AB于点N.‎ ‎①求点M、N的坐标;‎ ‎②是否存在点P,使四边形MNPD为菱形?并说明理由;‎ ‎(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.‎ ‎【分析】(1)①如图1,把抛物线解析式配成顶点式可得到顶点为M的坐标为(,),然后计算自变量为对应的一次函数值可得到N点坐标;‎ ‎②易得MN=,设P点坐标为(m,﹣2m+4),则D(m,﹣2m2+2m+4),则PD=﹣2m2+4m,由于PD∥MN,根据平行四边形的判定方法,当PD=MN时,四边形MNPD为平行四边形,即﹣2m2+4m=,求出m得到此时P点坐标为(‎ ‎,1),接着计算出PN,然后比较PN与MN的大小关系可判断平行四边形MNPD是否为菱形;‎ ‎(2)如图2,利用勾股定理计算出AB=2,再表示出P(1,2),则可计算出PB=,接着表示出抛物线解析式为y=ax2﹣2(a+1)x+4,则可用a表示出点D坐标为(1,2﹣a),所以PD=﹣a,由于∠DPB=∠OBA,根据相似三角形的判定方法,当=时,△PDB∽△BOA,即=;当=时,△PDB∽△BAO,即=,然后利用比例性质分别求出a的值,从而得到对应的抛物线的解析式.‎ ‎【解答】解:(1)①如图1,‎ ‎∵y=﹣2x2+2x+4=﹣2(x﹣)2+,‎ ‎∴顶点为M的坐标为(,),‎ 当x=时,y=﹣2×+4=3,则点N坐标为(,3);‎ ‎②不存在.‎ 理由如下:‎ MN=﹣3=,‎ 设P点坐标为(m,﹣2m+4),则D(m,﹣2m2+2m+4),‎ ‎∴PD=﹣2m2+2m+4﹣(﹣2m+4)=﹣2m2+4m,‎ ‎∵PD∥MN,‎ 当PD=MN时,四边形MNPD为平行四边形,即﹣2m2+4m=,解得m1=(舍去),m2=,此时P点坐标为(,1),‎ ‎∵PN==,‎ ‎∴PN≠MN,‎ ‎∴平行四边形MNPD不为菱形,‎ ‎∴不存在点P,使四边形MNPD为菱形;‎ ‎(2)存在.‎ 如图2,OB=4,OA=2,则AB==2,‎ 当x=1时,y=﹣2x+4=2,则P(1,2),‎ ‎∴PB==,‎ 设抛物线的解析式为y=ax2+bx+4,‎ 把A(2,0)代入得4a+2b+4=0,解得b=﹣2a﹣2,‎ ‎∴抛物线的解析式为y=ax2﹣2(a+1)x+4,‎ 当x=1时,y=ax2﹣2(a+1)x+4=a﹣2a﹣2+4=2﹣a,则D(1,2﹣a),‎ ‎∴PD=2﹣a﹣2=﹣a,‎ ‎∵DC∥OB,‎ ‎∴∠DPB=∠OBA,‎ ‎∴当=时,△PDB∽△BOA,即=,解得a=﹣2,此时抛物线解析式为y=﹣2x2+2x+4;‎ 当=时,△PDB∽△BAO,即=,解得a=﹣,此时抛物线解析式为y=﹣x2+3x+4;‎ 综上所述,满足条件的抛物线的解析式为y=﹣2x2+2x+4或y=﹣x2+3x+4.‎ ‎【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和菱形的判定;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.‎ ‎ ‎ ‎26.(12.00分)如图,在Rt△ABC中,∠C=90°,AC=BC=4cm,动点P从点C出发以1cm/s的速度沿CA匀速运动,同时动点Q从点A出发以cm/s的速度沿AB匀速运动,当点P到达点A时,点P、Q同时停止运动,设运动时间为t(s).‎ ‎(1)当t为何值时,点B在线段PQ的垂直平分线上?‎ ‎(2)是否存在某一时刻t,使△APQ是以PQ为腰的等腰三角形?若存在,求出t的值;若不存在,请说明理由;‎ ‎(3)以PC为边,往CB方向作正方形CPMN,设四边形QNCP的面积为S,求S关于t的函数关系式.‎ ‎【分析】(1)连接PB,由点B在线段PQ的垂直平分线上,推出BP=BQ,由此构建方程即可解决问题;‎ ‎(2)分两种情形分别构建方程求解即可;‎ ‎(3)如图4中,连接QC,作QE⊥AC于E,作QF⊥BC于F.则QE=AE,QF=EC,可得QE+QF=AE+EC=AC=4.S根据=S△QNC+S△PCQ=•CN•QF+•PC•QE,计算即可;‎ ‎【解答】解:(1)如图1中,连接BP.‎ 在Rt△ACB中,∵AC=BC=4,∠C=90°,‎ ‎∴AB=4‎ ‎∵点B在线段PQ的垂直平分线上,‎ ‎∴BP=BQ,‎ ‎∵AQ=t,CP=t,‎ ‎∴BQ=4﹣t,PB2=42+t2,‎ ‎∴(4﹣t)2=16+t2,‎ 解得t=8﹣4或8+4(舍弃),‎ ‎∴t=(8﹣4)s时,点B在线段PQ的垂直平分线上.‎ ‎(2)①如图2中,当PQ=QA时,易知△APQ是等腰直角三角形,∠AQP=90°.‎ 则有PA=AQ,‎ ‎∴4﹣t=•t,‎ 解得t=.‎ ‎②如图3中,当AP=PQ时,易知△APQ是等腰直角三角形,∠APQ=90°.‎ 则有:AQ=AP,‎ ‎∴t=(4﹣t),‎ 解得t=2,‎ 综上所述:t=s或2s时,△APQ是以PQ为腰的等腰三角形.‎ ‎(3)如图4中,连接QC,作QE⊥AC于E,作QF⊥BC于F.则QE=AE,QF=EC,可得QE+QF=AE+EC=AC=4.‎ ‎∵S=S△QNC+S△PCQ=•CN•QF+•PC•QE=t(QE+QF)=2t(0<t<4).‎ ‎【点评】本题考查四边形综合题、等腰直角三角形的性质、等腰三角形的判定和性质、线段的垂直平分线的性质定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.‎ ‎ ‎