- 305.73 KB
- 2021-05-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2020年广东省深圳市中考数学试卷
一、选择题(每小题3分,共12小题,满分36分)
1.(3分)(2020•深圳)2020的相反数是( )
A.2020 B.12020 C.﹣2020 D.-12020
2.(3分)(2020•深圳)下列图形既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
3.(3分)(2020•深圳)2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为( )
A.0.15×108 B.1.5×107 C.15×107 D.1.5×108
4.(3分)(2020•深圳)分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是( )
A.圆锥 B.圆柱
C.三棱柱 D.正方体
5.(3分)(2020•深圳)某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是( )
A.253,253 B.255,253 C.253,247 D.255,247
第25页(共25页)
6.(3分)(2020•深圳)下列运算正确的是( )
A.a+2a=3a2 B.a2•a3=a5 C.(ab)3=ab3 D.(﹣a3)2=﹣a6
7.(3分)(2020•深圳)如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是( )
A.40° B.60° C.70° D.80°
8.(3分)(2020•深圳)如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于12PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为( )
A.2 B.3 C.4 D.5
9.(3分)(2020•深圳)以下说法正确的是( )
A.平行四边形的对边相等
B.圆周角等于圆心角的一半
C.分式方程1x-2=x-1x-2-2的解为x=2
D.三角形的一个外角等于两个内角的和
10.(3分)(2020•深圳)如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为( )
第25页(共25页)
A.200tan70°米 B.200tan70°米
C.200sin 70°米 D.200sin70°米
11.(3分)(2020•深圳)二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是( )
A.abc>0
B.4ac﹣b2<0
C.3a+c>0
D.关于x的方程ax2+bx+c=n+1无实数根
12.(3分)(2020•深圳)如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:
①EF⊥BG;
②GE=GF;
③△GDK和△GKH的面积相等;
④当点F与点C重合时,∠DEF=75°,
其中正确的结论共有( )
第25页(共25页)
A.1个 B.2个 C.3个 D.4个
二、填空题(本题共4小题,每小题3分,共12分)
13.(3分)(2020•深圳)分解因式:m3﹣m= .
14.(3分)(2020•深圳)一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是 .
15.(3分)(2020•深圳)如图,在平面直角坐标系中,O(0,0),A(3,1),B(1,2).反比例函数y=kx(k≠0)的图象经过▱OABC的顶点C,则k= .
16.(3分)(2020•深圳)如图,在四边形ABCD中,AC与BD相交于点O,∠ABC=∠DAC=90°,tan∠ACB=12,BOOD=43,则S△ABDS△CBD= .
三、解答题(本题共7小题,共52分)
17.(5分)(2020•深圳)计算:(13)﹣1﹣2cos30°+|-3|﹣(4﹣π)0.
第25页(共25页)
18.(6分)(2020•深圳)先化简,再求值:a+1a2-2a+1÷(2+3-aa-1),其中a=2.
19.(7分)(2020•深圳)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.
请根据统计图提供的信息,解答下列问题.
(1)m= ,n= .
(2)请补全条形统计图;
(3)在扇形统计图中,“软件”所对应的扇形的圆心角是 度;
(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有 名.
20.(8分)(2020•深圳)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.
(1)求证:AE=AB;
(2)若AB=10,BC=6,求CD的长.
21.(8分)(2020•深圳)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.
(1)肉粽和蜜枣粽的进货单价分别是多少元?
第25页(共25页)
(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?
22.(9分)(2020•深圳)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.
小组讨论后,提出了下列三个问题,请你帮助解答:
(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;
(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;
(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且AEAG=ABAD=23,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.
23.(9分)(2020•深圳)如图1,抛物线y=ax2+bx+3(a≠0)与x轴的交点A(﹣3,0)和B(1,0),与y轴交于点C,顶点为D.
(1)求该抛物线的解析式;
(2)连接AD,DC,CB,将△OBC沿x轴以每秒1个单位长度的速度向左平移,得到△
第25页(共25页)
O'B'C',点O、B、C的对应点分别为点O'、B'、C',设平移时间为t秒,当点O'与点A重合时停止移动.记△O'B'C'与四边形AOCD重合部分的面积为S,请直接写出S与t之间的函数关系式;
(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=92作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME﹣MF=14?若存在,请求出F的坐标;若不存在,请说明理由.
第25页(共25页)
2020年广东省深圳市中考数学试卷
参考答案与试题解析
一、选择题(每小题3分,共12小题,满分36分)
1.(3分)(2020•深圳)2020的相反数是( )
A.2020 B.12020 C.﹣2020 D.-12020
【解答】解:2020的相反数是:﹣2020.
故选:C.
2.(3分)(2020•深圳)下列图形既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
【解答】解:A、不是中心对称图形,不是轴对称图形,故此选项不合题意;
B、既是中心对称图形,又是轴对称图形,故此选项符合题意;
C、不是中心对称图形,是轴对称图形,故此选项不合题意;
D、是中心对称图形,不是轴对称图形,故此选项不合题意;
故选:B.
3.(3分)(2020•深圳)2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为( )
A.0.15×108 B.1.5×107 C.15×107 D.1.5×108
【解答】解:将150000000用科学记数法表示为1.5×108.
故选:D.
4.(3分)(2020•深圳)分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是( )
第25页(共25页)
A.圆锥 B.圆柱
C.三棱柱 D.正方体
【解答】解:圆锥的主视图、左视图都是等腰三角形,而俯视图是圆,因此选项A不符合题意;
圆柱体的主视图、左视图都是矩形,而俯视图是圆形,因此选项B不符合题意;
三棱柱主视图、左视图都是矩形,而俯视图是三角形,因此选项C不符合题意;
正方体的三视图都是形状、大小相同的正方形,因此选项D符合题意;
故选:D.
5.(3分)(2020•深圳)某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是( )
A.253,253 B.255,253 C.253,247 D.255,247
【解答】解:x=(247+253+247+255+263)÷5=253,
这5个数从小到大,处在中间位置的一个数是253,因此中位数是253;
故选:A.
6.(3分)(2020•深圳)下列运算正确的是( )
A.a+2a=3a2 B.a2•a3=a5 C.(ab)3=ab3 D.(﹣a3)2=﹣a6
【解答】解:a+2a=3a,因此选项A不符合题意;
a2•a3=a2+3=a5,因此选项B符合题意;
(ab)3=a3b3,因此选项C不符合题意;
(﹣a3)2=a6,因此选项D不符合题意;
故选:B.
7.(3分)(2020•深圳)如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是( )
第25页(共25页)
A.40° B.60° C.70° D.80°
【解答】解:由题意得,∠4=60°,
∵∠1=40°,
∴∠3=180°﹣60°﹣40°=80°,
∵AB∥CD,
∴∠3=∠2=80°,
故选:D.
8.(3分)(2020•深圳)如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于12PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为( )
A.2 B.3 C.4 D.5
【解答】解:由题可得,AR平分∠BAC,
又∵AB=AC,
∴AD是三角形ABC的中线,
第25页(共25页)
∴BD=12BC=12×6=3,
故选:B.
9.(3分)(2020•深圳)以下说法正确的是( )
A.平行四边形的对边相等
B.圆周角等于圆心角的一半
C.分式方程1x-2=x-1x-2-2的解为x=2
D.三角形的一个外角等于两个内角的和
【解答】解:A、平行四边形的对边相等,所以A选项正确;
B、一条弧所对的圆周角等于它所对的圆心角的一半,所以B选项错误;
C、去分母得1=x﹣1﹣2(x﹣2),解得x=2,经检验原方程无解,所以C选项错误;
D、三角形的一个外角等于与它不相邻的两个内角的和,所以D选项错误.
故选:A.
10.(3分)(2020•深圳)如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为( )
A.200tan70°米 B.200tan70°米
C.200sin 70°米 D.200sin70°米
【解答】解:在Rt△PQT中,
∵∠QPT=90°,∠PQT=90°﹣70°=20°,
∴∠PTQ=70°,
∴tan70°=PQPT,
第25页(共25页)
∴PT=PQtan70°=200tan70°,
即河宽200tan70°米,
故选:B.
11.(3分)(2020•深圳)二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是( )
A.abc>0
B.4ac﹣b2<0
C.3a+c>0
D.关于x的方程ax2+bx+c=n+1无实数根
【解答】解:A.∵抛物线开口向下,
∴a<0,
∵对称轴为直线x=-b2a=-1,
∴b=2a<0,
∵抛物线与y轴交于正半轴,
∴c>0,
∴abc>0,
故A正确;
B.∵抛物线与x轴有两个交点,
∴b2﹣4ac>0,即4ac﹣b2<0,
故B正确;
C.∵抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,
∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,
第25页(共25页)
∴x=1时,y<0,
即a+b+c<0,
∵b=2a,
∴3a+c<0,
故C错误;
D.∵抛物线开口向下,顶点为(﹣1,n),
∴函数有最大值n,
∴抛物线y=ax2+bx+c与直线y=n+1无交点,
∴一元二次方程ax2+bx+c=n+1无实数根,
故D正确.
故选:C.
12.(3分)(2020•深圳)如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:
①EF⊥BG;
②GE=GF;
③△GDK和△GKH的面积相等;
④当点F与点C重合时,∠DEF=75°,
其中正确的结论共有( )
A.1个 B.2个 C.3个 D.4个
【解答】解:如图,连接BE,设EF与BG交于点O,
第25页(共25页)
∵将纸片折叠,使点B落在边AD的延长线上的点G处,
∴EF垂直平分BG,
∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,
∵AD∥BC,
∴∠EGO=∠FBO,
又∵∠EOG=∠BOF,
∴△BOF≌△GOE(ASA),
∴BF=EG,
∴BF=EG=GF,故②正确,
∵BE=EG=BF=FG,
∴四边形BEGF是菱形,
∴∠BEF=∠GEF,
当点F与点C重合时,则BF=BC=BE=12,
∵sin∠AEB=ABBE=612=12,
∴∠AEB=30°,
∴∠DEF=75°,故④正确,
由题意无法证明△GDK和△GKH的面积相等,故③错误;
故选:C.
二、填空题(本题共4小题,每小题3分,共12分)
13.(3分)(2020•深圳)分解因式:m3﹣m= m(m+1)(m﹣1) .
【解答】解:m3﹣m,
=m(m2﹣1),
=m(m+1)(m﹣1).
14.(3分)(2020•深圳)一口袋内装有编号分别为1,2,3,4,5,6,7
第25页(共25页)
的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是 37 .
【解答】解:∵从袋子中随机摸出一个球共有7种等可能结果,其中摸出编号为偶数的球的结果数为3,
∴摸出编号为偶数的球的概率为37,
故答案为:37.
15.(3分)(2020•深圳)如图,在平面直角坐标系中,O(0,0),A(3,1),B(1,2).反比例函数y=kx(k≠0)的图象经过▱OABC的顶点C,则k= ﹣2 .
【解答】解:连接OB,AC,交点为P,
∵四边形OABC是平行四边形,
∴AP=CP,OP=BP,
∵O(0,0),B(1,2),
∴P的坐标(12,1),
∵A(3,1),
∴C的坐标为(﹣2,1),
∵反比例函数y=kx(k≠0)的图象经过点C,
∴k=﹣2×1=﹣2,
故答案为﹣2.
第25页(共25页)
16.(3分)(2020•深圳)如图,在四边形ABCD中,AC与BD相交于点O,∠ABC=∠DAC=90°,tan∠ACB=12,BOOD=43,则S△ABDS△CBD= 332 .
【解答】解:如图,过点D作DM∥BC,交CA的延长线于点M,延长BA交DM于点N,
∵DM∥BC,
∴△ABC∽△ANM,△OBC∽△ODM,
∴ABBC=ANNM=tan∠ACB=12,BCDM=OBOD=43,
又∵∠ABC=∠DAC=90°,
∴∠BAC+∠NAD=90°,
∵∠BAC+∠BCA=90°,
∴∠NAD=∠BCA,
∴△ABC∽△DAN,
∴ABBC=DNNA=12,
设AB=a,DN=b,则BC=2a,NA=2b,MN=4b,
由BCDM=OBOD=43得,DM=32a,
∴4b+b=32a,
第25页(共25页)
即,b=310a,
∴S△ABDS△BCD=12AB⋅DN12BC⋅NB=ab2a⋅(a+2b)=310a22a⋅1610a=332.
故答案为:332.
三、解答题(本题共7小题,共52分)
17.(5分)(2020•深圳)计算:(13)﹣1﹣2cos30°+|-3|﹣(4﹣π)0.
【解答】解:原式=3﹣2×32+3﹣1
3-3+3-1
=2.
18.(6分)(2020•深圳)先化简,再求值:a+1a2-2a+1÷(2+3-aa-1),其中a=2.
【解答】解:原式=a+1(a-1)2÷2a-2+3-aa-1
=a+1(a-1)2÷a+1a-1
=a+1(a-1)2×a-1a+1
=1a-1
当a=2时,原式=12-1=1.
19.(7分)(2020•深圳)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.
第25页(共25页)
请根据统计图提供的信息,解答下列问题.
(1)m= 50 ,n= 10 .
(2)请补全条形统计图;
(3)在扇形统计图中,“软件”所对应的扇形的圆心角是 72 度;
(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有 180 名.
【解答】解:(1)m=15÷30%=50,
n%=5÷50×100%=10%,
故答案为:50,10;
(2)硬件专业的毕业生有:50×40%=20(人),
补全的条形统计图如右图所示;
(3)在扇形统计图中,“软件”所对应的扇形的圆心角是360°×1050=72°,
故答案为:72;
(4)600×30%=180(名),
即“总线”专业的毕业生有180名,
故答案为:180.
20.(8分)(2020•深圳)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.
第25页(共25页)
(1)求证:AE=AB;
(2)若AB=10,BC=6,求CD的长.
【解答】(1)证明:连接AC、OC,如图,
∵CD为切线,
∴OC⊥CD,
∴CD⊥AD,
∴OC∥AD,
∴∠OCB=∠E,
∵OB=OC,
∴∠OCB=∠B,
∴∠B=∠E,
∴AE=AB;
(2)解:∵AB为直径,
∴∠ACB=90°,
∴AC=102-62=8,
∵AB=AE=10,AC⊥BE,
∴CE=BC=6,
∵12CD•AE=12AC•CE,
∴CD=6×810=245.
第25页(共25页)
21.(8分)(2020•深圳)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.
(1)肉粽和蜜枣粽的进货单价分别是多少元?
(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?
【解答】解:(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,
由题意得:50(x+6)+30x=620,
解得:x=4,
∴6+4=10,
答:蜜枣粽的进货单价是4元,则肉粽的进货单价是10元;
(2)设第二批购进肉粽y个,则蜜枣粽购进(300﹣y)个,获得利润为w元,
由题意得:w=(14﹣10)y+(6﹣4)(300﹣y)=2y+600,
∵2>0,
∴w随y的增大而增大,
∵y≤2(300﹣y),
∴0<y≤200,
∴当y=200时,w有最大值,w最大值=400+600=1000,
答:第二批购进肉粽200个时,总利润最大,最大利润是1000元.
22.(9分)(2020•深圳)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.
小组讨论后,提出了下列三个问题,请你帮助解答:
第25页(共25页)
(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;
(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;
(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且AEAG=ABAD=23,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.
【解答】(1)证明:∵四边形AEFG为正方形,
∴AE=AF,∠EAG=90°,
又∵四边形ABCD为正方形,
∴AB=AD,∠BAD=90°,
∴∠EAB=∠GAD,
∴△AEB≌△AGD(SAS),
∴BE=DG;
(2)当∠EAG=∠BAD时,BE=DG,
理由如下:
∵∠EAG=∠BAD,
∴∠EAB=∠GAD,
第25页(共25页)
又∵四边形AEFG和四边形ABCD为菱形,
∴AE=AG,AB=AD,
∴△AEB≌△AGD(SAS),
∴BE=DG;
(3)解:方法一:过点E作EM⊥DA,交DA的延长线于点M,
过点G作GN⊥AB交AB于点N,
由题意知,AE=4,AB=8,
∵AEAG=ABAD=23,
∴AG=6,AD=12,
∵∠EMA=∠ANG,∠MAE=∠GAN,
∴△AME∽△ANG,
设EM=2a,AM=2b,则GN=3a,AN=3b,则BN=8﹣3b,
∴ED2=(2a)2+(12+2b)2=4a2+144+48b+4b2,
GB2=(3a)2+(8﹣3b)2=9a2+64﹣48b+9b2,
∴ED2+GB2=13(a2+b2)+208=13×4+208=260.
方法二:如图2,设BE与DG交于Q,
∵AEAG=ABAD=23,AE=4,AB=8
∴AG=6,AD=12.
∵四边形AEFG和四边形ABCD为矩形,
∴∠EAG=∠BAD,
第25页(共25页)
∴∠EAB=∠GAD,
∵EAAG=ABAD,
∴△EAB∽△GAD,
∴∠BEA=∠AGD,
∴A,E,G,Q四点共圆,
∴∠GQP=∠PAE=90°,
∴GD⊥EB,
连接EG,BD,
∴ED2+GB2=EQ2+QD2+GQ2+QB2=EG2+BD2,
∴EG2+BD2=42+62+82+122=260.
23.(9分)(2020•深圳)如图1,抛物线y=ax2+bx+3(a≠0)与x轴的交点A(﹣3,0)和B(1,0),与y轴交于点C,顶点为D.
(1)求该抛物线的解析式;
(2)连接AD,DC,CB,将△OBC沿x轴以每秒1个单位长度的速度向左平移,得到△O'B'C',点O、B、C的对应点分别为点O'、B'、C',设平移时间为t秒,当点O'与点A重合时停止移动.记△O'B'C'与四边形AOCD重合部分的面积为S,请直接写出S与t之间的函数关系式;
(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=92作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME﹣MF=14?若存在,请求出F的坐标;若不存在,请说明理由.
【解答】解:(1)∵抛物线y=ax2+bx+3过点A(﹣3,0),B(1,0),
第25页(共25页)
∴9a-3b+3=0a+b+3=0,解得a=-1b=-2,
∴抛物线的解析式为y=﹣x2﹣2x+3;
(2)①0<t<1时,如图1,若B'C'与y轴交于点F,
∵OO'=t,OB'=1﹣t,
∴OF=3OB'=3﹣3t,
∴S=12×(C'O'+OF)×OO'=12×(3+3﹣3t)×t=-32t2+3t,
②1≤t<32时,S=32;
③32≤t≤3时,如图2,C′O′与AD交于点Q,B′C′与AD交于点P,过点P作PH⊥C′O′于H,
∵AO=3,O'O=t,
∴AO'=3﹣t,O'Q=6﹣2t,
∴C'Q=2t﹣3,
∵QH=2PH,C'H=3PH,
∴PH=15C'Q=15(2t﹣3),
第25页(共25页)
∴S=32-12(2t-3)×15(2t﹣3),
∴S=-25t2+65t+35,
综合以上可得:S=-32t2+3t(0<t<1)32(1≤t<32)-25t2+65t+35(32≤t≤3).
(3)令F(﹣1,t),则MF=(m+1)2+(n-t)2,ME=92-n,
∵ME﹣MF=14,
∴MF=ME-14,
∴(m+1)2+(n-t)2=(174-n)2,
∴m2+2m+1+t2﹣2nt=-172n+28916.
∵n=﹣m2﹣2m+3,
∴(1+2n-172)m2+(2+4n﹣17)m+1+t2﹣6t+512-28916=0.
当t=154时,上式对于任意m恒成立,
∴存在F(﹣1,154).
第25页(共25页)