- 1.55 MB
- 2021-05-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第四关 以平面几何图形的变换为背景的解答题
1.如图, 中, 于,且.
()试说明是等腰三角形.
()已知,如图,动点从点出发以每秒的速度沿线段向点运动,同时动点从点出发以相同速度沿线段向点运动,当其中一点到达终点时整个运动都停止.设点运动的时间为(秒).
①若的边与平行,求的值.
②若点是边的中点,问在点运动的过程中, 能否成为等腰三角形?若能,求出的值;若不能,请说明理由.
【答案】(1)见解析;(2)①为或;②能, 值为或或,理由见解析
在Rt△ACD中,AC==5x,
∴AB=AC,
∴△ABC是等腰三角形;
(2)解:S△ABC=×5x×4x=40cm2,而x>0,
∴x=2cm,
则BD=4cm,AD=6cm,CD=8cm,AC=10cm.
①当MN∥BC时,AM=AN,
即10-t=t,
∴t=5;
当DN∥BC时,AD=AN,
得:t=6;
∴若△DMN的边与BC平行时,t值为5或6.
②当点M在BD上,即0≤t<4时,△MDE为钝角三角形,但DM≠DE;
当t=4时,点M运动到点D,不构成三角形,
当点M在DA上,即4<t≤10时,△MDE为等腰三角形,有3种可能.
如果DE=DM,则t-4=5,
∴t=9;
如果ED=EM,则点M运动到点A,
∴t=10;
如果MD=ME=t-4,
过点E做EF垂直AB于F,
因为ED=EA,
所以DF=AF=AD=3,
在Rt△AEF中,EF=4;
点睛:本题考查了勾股定理、等腰三角形的判定与性质、平行线的性质、解方程等知识;本题有一定难度,需要进行分类讨论才能得出结果.学/科**网
2.定义:对角线互相垂直的凸四边形叫做“垂直四边形”.
(1)理解:
如图1,已知四边形ABCD是“垂直四边形”,对角线AC,BD交于点O,AC=8,BD=7,求四边形ABCD的
面积.
(2)探究:
小明对 “垂直四边形”ABCD(如图1)进行了深入探究,发现其一组对边的平方和等于另一组对边的平方和.即.你认为他的发现正确吗?试说明理由.
(3)应用:
① 如图2,在△ABC中, ,AC=6,BC=8,动点P从点A出发沿AB方向以每秒5个单位的速度向点B匀速运动,同时动点Q从点C出发沿CA方向以每秒6个单位的速度向点A匀速运动,运动时间为t秒(),连结CP,BQ,PQ.当四边形BCQP是“垂直四边形”时,求t的值.
② 如图3,在△ABC中,,AB=3AC,分别以AB,AC为边向外作正方形ABDE和正方形ACFG,连结EG.请直接写出线段EG与BC之间的数量关系.
【答案】(1)28;(2)证明见解析;(3)①;②
【解析】试题分析:(1)由于对角线互相垂直,所以四边形ABCD的面积可化为AO•BD+CO•BD的和;
(2)由于对角线互相垂直,由勾股定理分别表示出AB2、CD2、AD2、BC2;
(3)①过点P作PD⊥AC于点D,构造△PAD∽△BAC后,利用BP2+CQ2=PQ2+BC2列出关于t的方程;②
故答案为:28;
(2)∵四边形ABCD是“垂直四边形”,
∴AC⊥BD.
由勾股定理可知:
AB2+CD2=(AO2+BO2)+(DO2+CO2),
AD2+BC2=(AO2+DO2)+(BO2+CO2),
∴AB2+CD2=AD2+BC2;
∴ AP=5t,CQ=6t
∴,∴AD=3t,PD=4t.
∵ 四边形BCQP是“垂直四边形”.
∴BP2+CQ2=PQ2+BC2.
∴(10-5t)2+(6t)2=(6-9t)2+82,
解得t=或t=0(舍去).
∴ 当四边形BCQP是“垂直四边形”时,t的值为.
②如图3,
连接CG、BG、BE、CE,
CE与BG交于点O
由题意知:EA=BA,AC=AG
∠EAB=∠CAG=90°
∴∠EAB+∠BAC=∠CAG+∠BAC
∴∠EAC=∠BAG
在△EAC与△BAG中,
点睛:本题考查的是垂直四边形的概念和性质、相似三角形的判定和性质以及勾股定理的应用,正确理解垂直四边形的定义,灵活运用勾股定理是解题的关键.
3.在四边形中, ,对角线平分.学科..网
(1)如图1,若,且,试探究边、与对角线的数量关系并说明理由.
(2)如图2,若将(1)中的条件“”去掉,(1)中的结论是否成立?请说明理由.
(3)如图3,若,探究边、与对角线的数量关系并说明理由.
【答案】(1).证明见解析;(2)成立;(3).理由见解析.
【解析】试题分析:(1)结论:AC=AD+AB,只要证明AD=AC,AB=AC即可解决问题;
(2)(1)中的结论成立.以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,只要证明△DAC≌△BEC即可解决问题;
(3)结论:AD+AB=AC.过点C作CE⊥AC交AB的延长线于点E,只要证明△ACE是等腰直角三角形,△DAC≌△BEC即可解决问题;
试题解析:解:(1)AC=AD+AB.
理由如下:如图1中,
(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,
∵∠BAC=60°,
∴△AEC为等边三角形,
∴AC=AE=CE,
∵∠D+∠ABC=180°,∠DAB=120°,
∴∠DCB=60°,
(3)结论:AD+AB=AC.理由如下:
过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠B=180°,∠DAB=90°,
∴DCB=90°,
∵∠ACE=90°,
∴∠DCA=∠BCE,
又∵AC平分∠DAB,
∴∠CAB=45°,
∴∠E=45°.
∴AC=CE.
又∵∠D+∠ABC=180°,∠D=∠CBE,
∴△CDA≌△CBE,
∴AD=BE,
∴AD+AB=AE.
在Rt△ACE中,∠CAB=45°,
∴AE=
∴.
4.△ABC和△CDE是以C为公共顶点的两个三角形.
(1)如图1,当△ABC和△CDE都是等边三角形时,连接BD、AE相交于点P.求∠DPE的度数;
(2)如图2,当△ABC和△CDE都是等腰直角三角形,且∠ACB=∠DCE=90°时,连接AD、BE,Q为AD中点,连接QC并延长交BE于K.求证:QK⊥BE;
(3)在(1)的条件下,N是线段AE与CD的交点,PF是∠DPE的平分线,与DC交于点F,CN=2,∠PFN=45°,求FN的长.
【答案】(1)60°;(2)见解析;(3)
DE、NE,再利用相似三角形的性质可得DE2=NE·PE,求出PE、PN,由此即可解决问题;
解:(1)如图1中,设AE交CD于J.
∴∠DPE=60°.
(2)如图2中,延长CQ到R,使得CQ=QR,连接AR、DR.
∵△ABC和△CDE都是等腰直角三角形,学/++科网
∴∠ACB=∠DCE=90°,AC=BC,CE=CD,
∴∠BCE+∠ACD=180°,
∵AQ=DQ,CQ=QR,
∴四边形ACDR是平行四边形,
∴∠CKB=90°,即CK⊥BE.
(3)如图3中,作NH⊥EC于H,NG⊥PF于G,在EH上取一点K使得NK=EK.
∵∠DPE=60°,PF平分∠DPE,
∴∠NPPF=30°,
∵∠PFN=45°,∠NGF=90°,
∴GF=GN=PN,FN=GN,
∴∠PNF=∠CNE=105°,∠CEN=15°,
∵KN=KE,
∴∠KNE=∠KEN=15°,
∴∠NKH=30°,
在Rt△CNH中,∵CN=2,∠CNH=30°,
∴CH=CN=,NH=CH=,
在Rt△NKH中,NK=KE=2NH=2,HK=NH=3,
∴EN===6+2,CE=DE=4+2
∵∠DEN=∠PED,∠EDN=∠EPD,
∴△DEN∽△PED,
∴DE2=NE•PE,
∴可得PE=,PN=PE﹣EN=,
∴FN=××=.
5.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.
(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;
(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不须证明)
(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;
(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.
【答案】(1)AE=DF,AE⊥DF;
(2)是;
(3)成立,理由见解析;
(4)CP=QC﹣QP=.
【解析】
试题分析:(1)AE=DF,AE⊥DF.先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠
CDF,再由等角的余角相等可得AE⊥DF;
(2)是.四边形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90°,DE=CF,所以△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因为∠CDF+∠ADF=90°,∠DAE+∠ADF=90°,所以AE⊥DF;
(3)成立.由(1)同理可证AE=DF,∠DAE=∠CDF,延长FD交AE于点G,再由等角的余角相等可得AE⊥DF;
(4)由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.
理由:由(1)同理可证AE=DF,∠DAE=∠CDF
延长FD交AE于点G,
则∠CDF+∠ADG=90°,
∴∠ADG+∠DAE=90°.
∴AE⊥DF;
(4)如图:
由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,
设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,
在Rt△QDC中,QC=,
∴CP=QC﹣QP=.
考点:四边形的综合知识.
6.如图1所示,在正方形ABCD和正方形CGEF中,点B、C、G在同一条直线上,M是线段AE的中点,DM的延长线交EF于点N,连接FM,易证:DM=FM,DM⊥FM(无需写证明过程)
(1)如图2,当点B、C、F在同一条直线上,DM的延长线交EG于点N,其余条件不变,试探究线段DM与FM有怎样的关系?请写出猜想,并给予证明;
(2)如图3,当点E、B、C在同一条直线上,DM的延长线交CE的延长线于点N,其余条件不变,探究线段DM与FM有怎样的关系?请直接写出猜想.
【答案】(1)DM⊥FM,DM=FM,证明见解析;
(2)DM⊥FM,DM=FM.
【解析】
试题分析:(1)连接DF,NF,由四边形ABCD和CGEF是正方形,得到AD∥BC,BC∥GE,于是得到AD∥GE,求得∠DAM=∠NEM,证得△MAD≌△MEN,得出DM=MN,AD=EN,推出△MAD≌△MEN,证出△DFN是等腰直角三角形,即可得到结论;
(2)连接DF,NF,由四边形ABCD是正方形,得到AD∥BC,由点E、B、C在同一条直线上,于是得到AD∥CN,求得∠DAM=∠NEM,证得△MAD≌△MEN,得出DM=MN,AD=EN,推出△MAD≌△MEN,证出△DFN是等腰直角三角形,于是结论得到.
试题解析:(1)如图2,DM=FM,DM⊥FM,
证明:连接DF,NF,
∵四边形ABCD和CGEF是正方形,
∴AD∥BC,BC∥GE,
∴AD∥GE,
∵∠EFN+∠NFC=90°,∴∠DFC+∠CFN=90°,∴∠DFN=90°,
∴DM⊥FM,DM=FM 学--科-网
(2)猜想:DM⊥FM,DM=FM,
证明如下:如图3,连接DF,NF,连接DF,NF,
∵四边形ABCD是正方形,∴AD∥BC,∵点E、B、C在同一条直线上,
∴AD∥CN,∴∠ADN=∠MNE,
在△MAD与△MEN中,,
∴△MAD≌△MEN,∴DM=MN,AD=EN,∵AD=CD,∴CD=NE,∵CF=EF,∵∠DCF=90°+45°=135°,∠NEF=180°﹣45°=135°,∴∠DCF=∠NEF,
在△DCF与△NEF中,,∴△MAD≌△MEN,∴DF=NF,∠CFD=∠EFN,
∵∠CFD+∠EFD=90°,∴∠NFE+∠EFD=90°,∴∠DFN=90°,
∴DM⊥FM,DM=FM.
考点:四边形综合题.
7.已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动.
(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;
(2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;
(3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由.
【答案】(1)证明见解析(2)存在(3)不成立
【解析】
(3)由(2),当b<2a,a>0,b>0,判定方程x2﹣bx+a2=0的根的情况,即可求得答案.
试题解析:(1)∵b=2a,点M是AD的中点,
∴AB=AM=MD=DC=a,
又∵在矩形ABCD中,∠A=∠D=90°,
∴∠AMB=∠DMC=45°,
∴∠BMC=90°.
(2)存在,
整理得:x2﹣bx+a2=0,
∵b>2a,a>0,b>0,
∴△=b2﹣4a2>0,
∴方程有两个不相等的实数根,且两根均大于零,符合题意,
∴当b>2a时,存在∠BMC=90°,
(3)不成立.
理由:若∠BMC=90°,
由(2)可知x2﹣bx+a2=0,
∵b<2a,a>0,b>0,
∴△=b2﹣4a2<0,
∴方程没有实数根,
∴当b<2a时,不存在∠BMC=90°,即(2)中的结论不成立.
考点:1、相似三角形的判定与性质;2、根的判别式;3、矩形的性质
8.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.
(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理;
(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,求△ACE为等腰三角形时CE:CD的值;
(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F
的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.
图1 图2 图3
【答案】(1)AE=DF,AE⊥DF,理由见解析;(2)成立,CE:CD=或2;(3)
【解析】试题分析:(1)根据正方形的性质,由SAS先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;
(2)有两种情况:①当AC=CE时,设正方形ABCD的边长为a,由勾股定理求出AC=CE=a即可;②当AE=AC时,设正方形的边长为a,由勾股定理求出AC=AE=a,根据正方形的性质知∠ADC=90°,然后根据等腰三角形的性质得出DE=CD=a即可;
(3)由(1)(2)知:点P的路径是一段以AD为直径的圆,设AD的中点为Q,连接QC交弧于点P,此
,
有两种情况:
①如图1,当AC=CE时,
设正方形ABCD的边长为a,由勾股定理得,
,
则;
②如图2,当AE=AC时,
设正方形ABCD的边长为a,由勾股定理得:
,
∵四边形ABCD是正方形,
∴∠ADC=90°,即AD⊥CE,
∴DE=CD=a,
∴CE:CD=2a:a=2;
即CE:CD=或2;
(3)∵点P在运动中保持∠APD=90°,
∴点P的路径是以AD为直径的圆,
点睛:此题主要考查了正方形的性质,勾股定理,圆周角定理,全等三角形的性质与判定,等腰三角形的性质,三角形的内角和定理,能综合运用性质进行推挤是解此题的关键,用了分类讨论思想,难度偏大.
9.综合与实践
问题情境
如图,同学们用矩形纸片ABCD开展数学探究活动,其中AD=8,CD=6。
操作计算 学!科网
(1)如图(1),分别沿BE,DF剪去RtΔABE和RtΔCDF两张纸片,如果剩余的纸片BEDF菱形,求AE的长;
图(1) 图(2) 图(3)
操作探究
把矩形纸片ABCD沿对角线AC剪开,得到ΔABC和两张纸片
(2)将两张纸片如图(2)摆放,点C和重合,点B,C,D在同一条直线上,连接,记的中点为M,连接BM,MD,发现ΔBMD是等腰三角形,请证明:
(3)如图(3),将两张纸片叠合在一起,然后将纸片绕点B顺时针旋转a(00