- 866.00 KB
- 2021-05-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
图形的变换(1)
班级 姓名 学号
一、选择题
1.下列图形中可以作为一个三棱柱的展开图的是( )
A. B. C. D.
2.下列四个立体图形中,左视图为矩形的是( )
A. ①③ B. ①④ C. ②③ D. ③④
3.如图所示,该几何体的俯视图是( )
4.如图是一个正方体纸盒的展开图,其中的六个正方形内分别标有数字“0”、“1”、“2”、“5”和汉字、“数”、“学”,将其围成一个正方体后,则与“5”相对的是( )
A. 0 B. 2 C. 数 D. 学
5.在长方形ABCD中AB=16,如图所示裁出一扇形ABE,将扇形围成一个圆锥(AB和AE重合),则此圆锥的底面半径为( )
A. 4 B. 16 C. 4 D. 8
6.如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是( )
A. B. C. D.
7.在下列图形中(每个小四边形皆为全等的正方形),可以是一个正方体表面展开的是( )
(A) (B) (C) (D)
8.在下面的网格图中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分别为(﹣1,﹣1),(1,﹣2),将△ABC绕点C顺时针旋转90°,则点A的对应点的坐标为( )
A. (4,1) B. (4,﹣1) C. (5,1) D. (5,﹣1)
9.如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是( )
A. 2﹣ B. +1 C. D. ﹣1
10.在△ABC中,已知AB=,∠A=30°,CD是AB边的中线,若将△ABC沿CD对折起来,折叠后两个小△ACD与△BCD重叠部分的面积恰好等于折叠前△ABC的面积的,有如下结论:
①AC边的长可以等于;
②折叠前的△ABC的面积可以等于;
③折叠后,以A、B为端点的线段AB与中线CD平行且相等。
其中,正确结论的个数是( )
A. 0个 B. 1个 C. 2个 D. 3个
二.填空题
11.如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是 cm3.
12.已知圆锥的侧面积等于cm2,母线长10cm,则圆锥的高是 cm.
13.如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣x上,则点B与其对应点B′间的距离为 .
14.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处.若∠A=26°,则∠CDE= .
15.如图,将一张边长为6cm的正方形纸片按虚线裁剪后,恰好围成底面是正六边形的棱柱,则这个六棱柱的侧面积为 cm2.
16.在▱ABCD中,AB<BC,已知∠B=30°,AB=2,将△ABC沿AC翻折至△AB′C,使点B′落在▱ABCD所在的平面内,连接B′D.若△AB′D是直角三角形,则BC的长为 .
17.如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则∠CDE的正切值为 .
18.如图,四边形是矩形纸片,.对折矩形纸片,使与 重合,折痕为;展平后再过点折叠矩形纸片,使点落在上的点,折痕与相交于点;再次展平,连接,,延长交于点.
有如下结论:
①; ②; ③;
④△是等边三角形; ⑤为线段上一动点,
是的中点,则的最小值是.其中正确结论的序号是 .
三.解答题
19. 如图,在边长为1个单位长度的小正方形格中,给出了△ABC(顶点是格线的交点).
(1) 请画出△ABC关于直线l对称的△A1B1C1;
(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C3B2.
A
B
C
l
20.已知:在Rt△ABC中,∠B=90°,BC=4cm,AB=8cm,D、E、F分别为AB、AC、BC边上的中点。若P为AB边上的一个动点,PQ∥BC,且交AC于点Q,以PQ为一边,在点A的异侧作正方形PQMN,记正方形PQMN与矩形EDBF的公共部分的面积为y。
(1)如图,当AP=3cm时,求y的值;
(2)设AP=xcm,试用含x的代数式表示y(cm2);
(3)当y=2cm2时,试确定点P的位置。
21. 如图,已知,在△ABC中,CA=CB,∠ACB=90°,E,F分别是CA,CB边的三等分点,将△ECF绕点C逆时针旋转α角(0°<α<90°),得到△MCN,连接AM,BN.
(1)求证:AM=BN;
(2)当MA∥CN时,试求旋转角α的余弦值.
22.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.
(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;
(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.
23.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,
OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)求证:DE⊥AG;
(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.
①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.
24.如图,在平面直角坐标系中,O为原点,平行四边形ABCD的边BC在x轴上,D点在y轴上,C点坐标为(2,0),BC=6,∠BCD=60°,点E是AB上一点,AE=3EB,⊙P过D,O,C三点,抛物线y=ax2+bx+c过点D,B,C三点.
(1)求抛物线的解析式;
(2)求证:ED是⊙P的切线;
(3)若将△ADE绕点D逆时针旋转90°,E点的对应点E′会落在抛物线y=ax2+bx+c上吗?请说明理由;
(4)若点M为此抛物线的顶点,平面上是否存在点N,使得以点B,D,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
答案详解
一、选择题
解答: 解:长方体左视图为矩形;球左视图为圆;圆锥左视图为三角形;圆柱左视图为矩形;
因此左视图为矩形的有①④.
故选:B.
3.如图所示,该几何体的俯视图是( )
解答:解:从上面看是一个正方形,在正方形的左下角有一个小正方形.
故选:B.
4.如图是一个正方体纸盒的展开图,其中的六个正方形内分别标有数字“0”、“1”、“2”、“5”和汉字、“数”、“学”,将其围成一个正方体后,则与“5”相对的是( )
A. 0 B. 2 C. 数 D. 学
解答: 解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“数”相对的字是“1”;
“学”相对的字是“2”;
“5”相对的字是“0”.
故选:A.
5.在长方形ABCD中AB=16,如图所示裁出一扇形ABE,将扇形围成一个圆锥(AB和AE重合),则此圆锥的底面半径为( )
A. 4 B. 16 C. 4 D. 8
解答: 解:设圆锥的底面圆半径为r,依题意,得
2πr=,
解得r=4.
故小圆锥的底面半径为4;
故选A.
6.如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是( )
A. B. C. D.
解答: 解:找一张正方形的纸片,按上述顺序折叠、裁剪,然后展开后得到的图形如图所示:
故选A.
7.在下列图形中(每个小四边形皆为全等的正方形),可以是一个正方体表面展开的是( )
(A) (B) (C) (D)
解答:解:利用正方体及其表面展开图的特点解题:
A、 出现了“田”字格,故不能;
B、折叠后上面两个面无法折起来,而且下边没有面,不能折成正方体;
C、折叠后能围成一个正方体;
D、折叠后,上面的两个面重合,不能折成正方体。
故选C。
8.在下面的网格图中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分别为(﹣1,﹣1),(1,﹣2),将△ABC绕点C顺时针旋转90°,则点A的对应点的坐标为( )
A. (4,1) B. (4,﹣1) C. (5,1) D. (5,﹣1)
解答:解:如图,A点坐标为(0,2),
将△ABC绕点C顺时针旋转90°,则点A的对应点的A′的坐标为(5,﹣1).
故选D.
9.如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是( )
A. 2﹣ B. +1 C. D. ﹣1
解答:解:连接AD、DG、BO、OM,如图.
∵△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,
∴AD⊥BC,GD⊥EF,DA=DG,DC=DF,
∴∠ADG=90°﹣∠CDG=∠FDC,=,
∴△DAG∽△DCF,
∴∠DAG=∠DCF.
∴A、D、C、M四点共圆.
根据两点之间线段最短可得:BO≤BM+OM,即BM≥BO﹣OM,
当M在线段BO与该圆的交点处时,线段BM最小,
此时,BO===,OM=AC=1,
则BM=BO﹣OM=﹣1.
故选D.
10.在△ABC中,已知AB=,∠A=30°,CD是AB边的中线,若将△ABC沿CD对折起来,折叠后两个小△ACD与△BCD重叠部分的面积恰好等于折叠前△ABC的面积的,有如下结论:
①AC边的长可以等于; ②折叠前的△ABC的面积可以等于;
③折叠后,以A、B为端点的线段AB与中线CD平行且相等。
其中,正确结论的个数是( )
A. 0个 B. 1个 C. 2个 D. 3个
解答:解:①若AC=成立,根据等腰三角形的性质及图形折叠的性质
可求出四边形AB1DC为平行四边形,
再根据平行四边形的性质及三角形的面积公式求解:
若AC=成立,如图(1),在△ACD中,由∠CAD=30°,AD=,
∴∠ADC=(180°-∠CAD)=75°,∠CDB=180°-∠ADC=105°,
而∠CDB1=∠CDB,
∴∠B1DA=105°-75°=30°,∴AC∥B1D。
∵B1D=BD==AC,∴四边形AB1DC为平行四边形。
∴S△CED=S△ACD=S△ABC,满足条件,即AC的长可以等于,
故①正确。
②假设S△ABC=成立,由△ABC的面积公式可求出AC=,根据三角形的三边关系可求出∠B=60°,由平行四边形的判定定理可求出四边形AB2CD为平行四边形,再根据平行四边形的性质及三角形的面积公式求解:
若S△ABC=,
∵S△ABC=AB•AC•sin∠CAB,∴AC=。
∵AC=,∠B=60°,如图(2),∴∠CDB=60°=∠DCB2。
∴AD∥B2C。
又∵B2C=BC==AD,∴四边形AB2CD为平行四边形。
∴S△CFD=S△ACD=S△ABC,满足条件,即S△ABC的值可以等于,
故②正确。
③综合①②可知,以A、B为端点的线段AB与中线CD平行且相等:
由平行四边形AB1CD或平行四边形AB2CD,显然成立,故③正确。
故选D。
二.填空题
11.如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是 24 cm3.
解答: 解:该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,
依题意可求出该几何体的体积为3×2×4=24cm3.
答:这个长方体的体积是24cm3.
故答案为:24.
12.已知圆锥的侧面积等于cm2,母线长10cm,则圆锥的高是 ☆ cm.
解答:解:设圆锥的底面圆的半径为r,
根据题意得•2π•r•10=60π,
解得r=6,
所以圆锥的高==8(cm).
故答案为8.
13.如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣x上,则点B与其对应点B′间的距离为 8 .
解答: 解:由题意可知,点A移动到点A′位置时,纵坐标不变,
∴点A′的纵坐标为6,
﹣x=6,解得x=﹣8,
∴△OAB沿x轴向左平移得到△O′A′B′位置,移动了8个单位,
∴点B与其对应点B′间的距离为8,
故答案为:8.
14.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处.若∠A=26°,则∠CDE= .
解答:解:∵在Rt△ABC中,∠ACB=90°,∠A=26°,
∴∠B=64°,
∵将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,∠ACB=90°,
∴∠BCD=∠ECD=45°,∠CED=∠B=64°,
∴∠CDE=180°﹣∠ECD﹣∠CED=71°,
故答案为:71°.
15.如图,将一张边长为6cm的正方形纸片按虚线裁剪后,恰好围成底面是正六边形的棱柱,则这个六棱柱的侧面积为 36﹣12 cm2.
解答:解:∵将一张边长为6的正方形纸片按虚线裁剪后,恰好围成一个底面是正六边形的
棱柱,
∴这个正六边形的底面边长为1,高为,
∴侧面积为长为6,宽为6﹣2的长方形,
∴面积为:6×(6﹣2)=36﹣12.
故答案为:36﹣12.
16.在▱ABCD中,AB<BC,已知∠B=30°,AB=2,将△ABC沿AC翻折至△AB′C,使点B′落在▱ABCD所在的平面内,连接B′D.若△AB′D是直角三角形,则BC的长为 4或6 .
解答: 解:当∠B′AD=90°AB<BC时,如图1,
∵AD=BC,BC=B′C,
∴AD=B′C,
∵AC∥B′D,∠B′AD=90°,
∴∠B′GC=90°,
∵∠B=30°,AB=2,
∴∠AB′C=30°,
∴GC= B′C= BC,
∴G是BC的中点,
在RT△ABG中,BG=AB=×2=3,
∴BC=6;
当∠AB′D=90°时,如图2,
∵AD=BC,BC=B′C,
∴AD=B′C,
∵AC∥B′D,
∴四边形ACDB′是等腰梯形,
∵∠AB′D=90°,
∴四边形ACDB′是矩形,
∴∠BAC=90°,
∵∠B=30°,AB=2,
∴BC=AB÷=2×=4,
∴当BC的长为4或6时,△AB′D是直角三角形.
故答案为:4或6.
17.如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则∠CDE的正切值为 3 .
解答: 解:∵△ABC为等边三角形,
∴AB=AC,∠BAC=60°,
∵△ABD绕A点逆时针旋转得△ACE,
∴AD=AE=5,∠DAE=∠BNAC=60°,CE=BD=6,
∴△ADE为等边三角形,
∴DE=AD=5,
过E点作EH⊥CD于H,如图,设DH=x,则CH=4﹣x,
在Rt△DHE中,EH2=52﹣x2,
在Rt△DHE中,EH2=62﹣(4﹣x)2,
∴52﹣x2=62﹣(4﹣x)2,解得x=,
∴EH==,
在Rt△EDH中,tan∠HDE===3,
即∠CDE的正切值为3.
故答案为:3.
18.如图,四边形是矩形纸片,.对折矩形纸片,使与 重合,折痕为;展平后再过点折叠矩形纸片,使点落在上的点,折痕与相交于点;再次展平,连接,,延长交于点.
有如下结论:
①; ②; ③;
④△是等边三角形; ⑤为线段上一动点,
是的中点,则的最小值是.
其中正确结论的序号是 .
解答:解:如图1,连接AN,,
∵EF垂直平分AB,
∴AN=BN,
根据折叠的性质,可得
AB=BN,
∴AN=AB=BN.
∴△ABN为等边三角形.
∴∠ABN=60°,∠PBN=60°÷2=30°,
即结论①正确;
∵∠ABN=60°,∠ABM=∠NBM,
∴∠ABM=∠NBM=60°÷2=30°,
∴AM=,
即结论②不正确.
∵EF∥BC,QN是△MBG的中位线,
∴QN=BG;
∵BG=BM=,
∴QN=,
即结论③不正确.
∵∠ABM=∠MBN=30°,∠BNM=∠BAM=90°,
∴∠BMG=∠BNM﹣∠MBN=90°﹣30°=60°,
∴∠MBG=∠ABG﹣∠ABM=90°﹣30°=60°,
∴∠BGM=180°﹣60°﹣60°=60°,
∴∠MBG=∠BMG=∠BGM=60°,
∴△BMG为等边三角形,
即结论④正确.
∵△BMG是等边三角形,点N是MG的中点,
∴BN⊥MG,
∴BN=BG•sin60°=,
P与Q重合时,PN+PH的值最小,
∵P是BM的中点,H是BN的中点,
∴PH∥MG,
∵MG⊥BN,
∴PH⊥BN,
又∵PE⊥AB,
∴PH=PE,
∴PN+PH=PN+PE=EN,
∵EN==,
∴PN+PH=,
∴PN+PH的最小值是,
即结论⑤正确.
故答案为:①④⑤.
三.解答题
19. 如图,在边长为1个单位长度的小正方形格中,给出了△ABC(顶点是格线的交点).
(1) 请画出△ABC关于直线l对称的△A1B1C1;
(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C3B2.
A
B
C
l
解答:解:(1)如图所示:△A1B1C1,即为所求;
(2)如图所示:△A2B2C2,即为所求.
20.已知:在Rt△ABC中,∠B=90°,BC=4cm,AB=8cm,D、E、F分别为AB、AC、BC边上的中点。若P为AB边上的一个动点,PQ∥BC,且交AC于点Q,以PQ为一边,在点A的异侧作正方形PQMN,记正方形PQMN与矩形EDBF的公共部分的面积为y。
(1)如图,当AP=3cm时,求y的值;
(2)设AP=xcm,试用含x的代数式表示y(cm2);
(3)当y=2cm2时,试确定点P的位置。
解:(1)由于D是AB中点,因此DE是△ABC的中位线,AD=BD=4cm,DE=2cm。
在Rt△APQ中,AP=3cm,∴PQ=AP•tanA=3×=1.5(cm)。
∴DN=AN-AD=AP+PN-AD=3+1.5-4=0.5。
∴重合部分的面积应该是y=DN·MN=1.5×0.5=0.75(cm2)。
(2)当0<x≤时,y=0;
当<x≤4时,y=;
当4<x≤时,y=x;
当<x<8时,y=16-2x。
(3)当<x≤4时,若y=2,即=2,解得x=或x=(舍去);
当4<x≤时,若y=2,即x=2,不符合4<x≤;
当<x<8时,若y=2,即16-2x=2解得x=7。
综上所述,当x=cm或x=7cm时,y=2cm2。
21. 如图,已知,在△ABC中,CA=CB,∠ACB=90°,E,F分别是CA,CB边的三等分点,将△ECF绕点C逆时针旋转α角(0°<α<90°),得到△MCN,连接AM,BN.
(1)求证:AM=BN;
(2)当MA∥CN时,试求旋转角α的余弦值.
解答: 解:(1)∵CA=CB,∠ACB=90°,E,F分别是CA,CB边的三等分点,
∴CE=CF,
根据旋转的性质,CM=CE=CN=CF,∠ACM=∠BCN=α,
在△AMC和△BNC中,
,
∴△AMC≌△BNC,
∴AM=BN;
(2)∵MA∥CN,
∴∠ACN=∠CAM,
∵∠ACN+∠ACM=90°,
∴∠CAM+∠ACM=90°,
∴∠AMC=90°,
∴cosα===.
22.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.
(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;
(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.
解答: (1)证明:①∵△OCD旋转到△OC′D′,
∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,
∵OA=OB,C、D为OA、OB的中点,
∴OC=OD,
∴OC′=OD′,
在△AOC′和△BOD′中,,
∴△AOC′≌△BOD′(SAS),
∴AC′=BD′;
②延长AC′交BD′于E,交BO于F,如图1所示:
∵△AOC′≌△BOD′,
∴∠OAC′=∠OBD′,
又∠AFO=∠BFE,∠OAC′+∠AFO=90°,
∴∠OBD′+∠BFE=90°,
∴∠BEA=90°,
∴AC′⊥BD′;
(2) 解:∠AEB=θ成立,理由如下:如图2所示:
∵△OCD旋转到△OC′D′,
∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,
∵CD∥AB,
∴,
∴,
∴,
又∠AOC′=∠BOD′,
∴△AOC′∽△BOD′,
∴∠OAC′=∠OBD′,
又∠AFO=∠BFE,
∴∠AEB=∠AOB=θ.
23.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)求证:DE⊥AG;
(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.
①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.
解答: 解:(1)如图1,延长ED交AG于点H,
∵点O是正方形ABCD两对角线的交点,
∴OA=OD,OA⊥OD,
∵OG=OE,
在△AOG和△DOE中,
,
∴△AOG≌△DOE,
∴∠AGO=∠DEO,
∵∠AGO+∠GAO=90°,
∴∠AGO+∠DEO=90°,
∴∠AHE=90°,
即DE⊥AG;
(2)①在旋转过程中,∠OAG′成为直角有两种情况:
(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,
∵OA=OD=OG=OG′,
∴在Rt△OAG′中,sin∠AG′O==,
∴∠AG′O=30°,
∵OA⊥OD,OA⊥AG′,
∴OD∥AG′,
∴∠DOG′=∠AG′O=30°,
即α=30°;
(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,
同理可求∠BOG′=30°,
∴α=180°﹣30°=150°.
综上所述,当∠OAG′=90°时,α=30°或150°.
②如图3,当旋转到A、O、F′在一条直线上时,AF′的长最大,
∵正方形ABCD的边长为1,
∴OA=OD=OC=OB=,
∵OG=2OD,
∴OG′=OG=,
∴OF′=2,
∴AF′=AO+OF′=+2,
∵∠COE′=45°,
∴此时α=315°.
24.如图,在平面直角坐标系中,O为原点,平行四边形ABCD的边BC在x轴上,D点在y轴上,C点坐标为(2,0),BC=6,∠BCD=60°,点E是AB上一点,AE=3EB,⊙P过D,O,C三点,抛物线y=ax2+bx+c过点D,B,C三点.
(1)求抛物线的解析式;
(2)求证:ED是⊙P的切线;
(3)若将△ADE绕点D逆时针旋转90°,E点的对应点E′会落在抛物线y=ax2+bx+c上吗?请说明理由;
(4)若点M为此抛物线的顶点,平面上是否存在点N,使得以点B,D,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
解答: 解:(1)∵C(2,0),BC=6,
∴B(﹣4,0),
在Rt△OCD中,∵tan∠OCD=,
∴OD=2tan60°=2,
∴D(0,2),
设抛物线的解析式为y=a(x+4)(x﹣2),
把D(0,2)代入得a•4•(﹣2)=2,解得a=﹣,
∴抛物线的解析式为y=﹣(x+4)(x﹣2)=﹣x2﹣x+2;
(2)在Rt△OCD中,CD=2OC=4,
∵四边形ABCD为平行四边形,
∴AB=CD=4,AB∥CD,∠A=∠BCD=60°,AD=BC=6,
∵AE=3BE,
∴AE=3,
∴=,==,
∴=,
而∠DAE=∠DCB,
∴△AED∽△COD,
∴∠ADE=∠CDO,
而∠ADE+∠ODE=90°
∴∠CDO+∠ODE=90°,
∴CD⊥DE,
∵∠DOC=90°,
∴CD为⊙P的直径,
∴ED是⊙P的切线;
(3)E点的对应点E′不会落在抛物线y=ax2+bx+c上.理由如下:
∵△AED∽△COD,
∴=,即=,解得DE=3,
∵∠CDE=90°,DE>DC,
∴△ADE绕点D逆时针旋转90°,E点的对应点E′在射线DC上,
而点C、D在抛物线上,
∴点E′不能在抛物线上;
(4)存在.
∵y=﹣x2﹣x+2=﹣(x+1)2+
∴M(﹣1,),
而B(﹣4,0),D(0,2),
如图2,
当BM为平行四边形BDMN的对角线时,点D向左平移4个单位,
再向下平移2个单位得到点B,则点M(﹣1,)向左平移4个单位,
再向下平移2个单位得到点N1(﹣5,);
当DM为平行四边形BDMN的对角线时,点B向右平移3个单位,
再向上平移个单位得到点M,则点D(0,2)向右平移3个单位,
再向上平移个单位得到点N2(3,);
当BD为平行四边形BDMN的对角线时,点M向左平移3个单位,
再向下平移个单位得到点B,则点D(0,2)向右平移3个单位,
再向下平移个单位 得到点N3(﹣3,﹣),
综上所述,点N的坐标为(﹣5,)、(3,)、(﹣3,﹣).