- 112.50 KB
- 2021-05-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
阿氏圆模型专题训练
阿氏圆(阿波罗尼斯圆):
已知平面上两定点A、B,则所有满足PA/PB=k(k不等于1)的点P的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称阿氏圆。在初中的题目中往往利用逆向思维构造"斜A"型相似(也叫"母子型相似"或"美人鱼相似")+两点间线段最短解决带系数两线段之和的最值问题。
观察下面的图形,当P在在圆上运动时,PA、PB的长在不断的发生变化,但它们的比值却始终保持不变。
解决阿氏圆问题,首先要熟练掌握母子型相似三角形的性质和构造方法。
如图,在△ABC的边AC上找一点D,使得AD/AB=AB/AC,则此时△ABD∽△ACB。
那么如何应用"阿氏圆"的性质解答带系数的两条线段和的最小值呢?我们来看一道基本题目:
已知∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点.
(1) 求的最小值为
(2) 求的最小值为
实战练习:
1、已知⊙O半径为1,AC、BD为切线,AC=1,BD=2,P为弧AB上一动点,
试求的最小值
2、已知点A(4,0),B(4,4),点P在半径为2的⊙O上运动,试求的最小值
3、已知点A(-3,0),B(0,3),C(1,0),若点P为⊙C上一动点,且⊙C与y轴相切,
(1)的最小值;
(2)的最小值.
4、如图1,在平面直角坐标系xoy中,半⊙O交x轴与点A、B(2,0)两点,AD、BC均为半⊙O的切线,AD=2,BC=7.
(1)求OD的长;
(2)如图2,若点P是半⊙O上的动点,Q为OD的中点.连接PO、PQ.
①求证:△OPQ∽△ODP;
②是否存在点P,使有最小值,若存在,试求出点P的坐标;
若不存在,请说明理由.
5、(1)如图1,已知正方形ABC的边长为4,圆B的半径为2,点P是圆B上的一个动点,求的最小值和的最大值.
(2)如图2,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么的最小值为 ;的最大值为
(3)如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2.点P是圆B上的一个动点.那么的最小值为 ;的最大值为