- 389.50 KB
- 2021-05-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
资阳市2012年高中阶段教育学校招生考试
数 学
全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.
答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.
第Ⅰ卷(选择题 共30分)
注意事项:
每小题选出的答案不能答在试卷上,须用2B铅笔在答题卡上把对应题目的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.
一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题意.
1.的相反数是
A. B. C. D.
2.下列事件为必然事件的是
A.小王参加本次数学考试,成绩是150分
B.某射击运动员射靶一次,正中靶心
C.打开电视机,CCTV第一套节目正在播放新闻
(第3题图)
D.口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球
3.如图是一个正方体被截去一角后得到的几何体,它的俯视图是
A
B
D
C
4.下列图形:①平行四边形;②菱形;③圆;④梯形;⑤等腰三角形;⑥直角三角形;⑦国旗上的五角星.这些图形中既是轴对称图形又是中心对称图形的有
A.1种 B.2种 C.3种 D.4种
5.下列计算或化简正确的是
A. B. C. D.
6.小华所在的九年级一班共有50名学生,一次体检测量了全班学生
的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是
A.1.65米是该班学生身高的平均水平
B.班上比小华高的学生人数不会超过25人
C.这组身高数据的中位数不一定是1.65米
D.这组身高数据的众数不一定是1.65米
(第7题图)
7.如图所示的球形容器上连接着两根导管,容器中盛满了不溶于水的比空气重的某种气体,现在要用向容器中注水的方法来排净里面的气体.水从左导管匀速地注入,气体从右导管排出,那么,容器内剩余气体的体积与注水时间的函数关系的大致图象是
A
B
D
C
(第8题图)
8.如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以
说明下列哪一个命题是假命题?
A.一组对边平行,另一组对边相等的四边形是平行四边形
B.有一组对边平行的四边形是梯形
C.一组对边相等,一组对角相等的四边形是平行四边形
D.对角线相等的四边形是矩形
(第9题图)
y
x
9.如图是二次函数的部分图象,由图象可知
不等式的解集是
A. B.
C. D.
(第10题图)
10.如图,在△ABC中,∠C=90°,将△ABC沿直线MN
翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,
MC=6,NC=,则四边形MABN的面积是
A. B.
C. D.
资阳市2012年高中阶段教育学校招生考试
数 学
第Ⅱ卷(非选择题 共90分)
题号
二
三
总 分
总分人
17
18
19
20
21
22
23
24
25
得分
注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.
二、填空题:本大题共6个小题,每小题3分,共18分.把答案直接填在题中横线上.
11.为了保护人类居住环境,我国的火电企业积极做好节能环保工作.2011年,我国火电企业的平均煤耗继续降低,仅为330000毫克/千瓦时,用科学记数法表示并保留三个有效数字为
毫克/千瓦时.
12.直角三角形的两边长分别为16和12,则此三角形的外接圆半径是 .
13.关于的一元二次方程有两个不相等的实数根,则k的取值范围是 .
(第15题图)
14.某果园有苹果树100棵,为了估计该果园的苹果总产量,小王先按长势把苹果树分成了A、B、C三个级别,其中A级30棵, B级60棵, C级10棵,然后从A、B、C三个级别的苹果树中分别随机抽取了3棵、6棵、1棵,测出其产量,制成了如下的统计表.小李看了这个统计表后马上正确估计出了该果园的苹果总产量,那么小李的估计值是 千克.
苹果树长势
A级
B级
C级
随机抽取棵数(棵)
所抽取果树的平均产量(千克)
15.如图,O为矩形ABCD的中心,M为BC边上一点,N为DC边上一点,ON⊥OM,若AB=6,AD=4,设OM=,ON=,则与的函数关系式为 .
16.观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于的方程(为正整数)的根,你的答案是: .
三、解答题:本大题共9个小题,共72分.解答应写出必要的文字说明,证明过程或演算步骤.
17.(本小题满分7分)先化简,再求值:
,其中是方程的根.
18.(本小题满分7分)为了决定谁将获得仅有的一张科普报告入场券,甲和乙设计了如下的一个游戏:
口袋中有编号分别为1、2、3的红球三个和编号为4的白球一个,四个球除了颜色或编号不同外,没有任何别的区别,摸球之前将小球搅匀,摸球的人都蒙上眼睛.先甲摸两次,每次摸出一个球;把甲摸出的两个球放回口袋后,乙再摸,乙只摸一个球.如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分;如果乙摸出的球是白色,乙得1分,否则,乙得0分 ;得分高的获得入场券,如果得分相同,游戏重来.
(1)(4分)运用列表或画树状图求甲得1分的概率;
(2)(3分)这个游戏是否公平?请说明理由.
19.(本小题满分8分) 已知:一次函数的图象与某反比例函数的图象的一个公共点的横坐标为1.
(1)(3分)求该反比例函数的解析式;
(2)(3分)将一次函数的图象向上平移4个单位,求平移后的图象与反比例函数图象的交点坐标;
(3)(2分)请直接写出一个同时满足如下条件的函数解析式:
①函数的图象能由一次函数的图象绕点旋转一定角度得到;
②函数的图象与反比例函数的图象没有公共点.
(第20题图)
20.(本小题满分8分) 小强在教学楼的点P处观察对面的办公大楼.为了测量点P到对面办公大楼上部AD的距离,小强测得办公大楼顶部点A的仰角为45°,测得办公大楼底部点B的俯角为60°,已知办公大楼高46米,CD=10米.求点P到AD的距离(用含根号的式子表示).
21.(本小题满分8分) 已知、是正实数,那么,是恒成立的.
(第21题图)
(1)(3分)由恒成立,说明恒成立;
(2)(3分)填空:已知、、是正实数,由恒成立,猜测: 也恒成立;
(3)(2分)如图,已知AB是直径,点P是弧上异于点A和点B的一点,PC⊥AB,垂足为C,AC=,BC=,由此图说明恒成立.
22.(本小题满分8分)为了解决农民工子女就近入学问题,我市第一小学计划2012年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20:1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅.(课桌凳和办公桌椅均成套购进)
(1)(3分)一套课桌凳和一套办公桌椅的价格分别为多少元?
(2)(5分)求出课桌凳和办公桌椅的购买方案.
23.(本小题满分8分)(1)(3分)如图(1),正方形AEGH的顶点E、H在正方形ABCD的边上,直接写出HD∶GC∶EB的结果(不必写计算过程);
(2)(3分)将图(1)中的正方形AEGH绕点A旋转一定角度,如图(2),求HD∶GC∶EB;
(1)
(3)
(2)
(第23题图)
(3)(2分)把图(2)中的正方形都换成矩形,如图(3),且已知DA∶AB=HA∶AE=:,此时HD∶GC∶EB的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程).
(第24题图)
24.(本小题满分9分)如图,在△ABC中,AB=AC,∠A=30°,以AB为直径的⊙O交BC于点D,交AC于点,连结DE,过点B作BP平行于DE,交⊙O于点P,连结EP、CP、OP.
(1)(3分)BD=DC吗?说明理由;
(2)(3分)求∠BOP的度数;
(3)(3分)求证:CP是⊙O的切线;
如果你解答这个问题有困难,可以参考如下信息:
为了解答这个问题,小明和小强做了认真的探究,然后分别用不同的思路完成了这个题目.在进行小组交流的时候,小明说:“设OP交AC于点G,证△AOG∽△CPG”;小强说:“过点C作CH⊥AB于点H,证四边形CHOP是矩形”.
25.(本小题满分9分)抛物线的顶点在直线上,过点F的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥轴于点A,NB⊥轴于点B.
(第25题图)
(1)(3分)先通过配方求抛物线的顶点坐标(坐标可用含的代数式表示),再求的值;
(2)(3分)设点N的横坐标为,试用含的代数式表示点N的纵坐标,并说明NF=NB;
(3)(3分)若射线NM交轴于点P,且PA×PB=,求点M的坐标.