• 492.00 KB
  • 2021-05-13 发布

全国各地中考数学选择填空压轴题汇编二

  • 20页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2018年全国各地中考数学选择、填空压轴题汇编(二)‎ 参考答案与试题解析 ‎ ‎ 一.选择题(共8小题)‎ ‎1.(2018•泰州)如图,平面直角坐标系xOy中,点A的坐标为(9,6),AB⊥y轴,垂足为B,点P从原点O出发向x轴正方向运动,同时,点Q从点A出发向点B运动,当点Q到达点B时,点P、Q同时停止运动,若点P与点Q的速度之比为1:2,则下列说法正确的是(  )‎ A.线段PQ始终经过点(2,3)‎ B.线段PQ始终经过点(3,2)‎ C.线段PQ始终经过点(2,2)‎ D.线段PQ不可能始终经过某一定点 解:当OP=t时,点P的坐标为(t,0),点Q的坐标为(9﹣2t,6).‎ 设直线PQ的解析式为y=kx+b(k≠0),‎ 将P(t,0)、Q(9﹣2t,6)代入y=kx+b,‎ ‎,解得:,‎ ‎∴直线PQ的解析式为y=x+.‎ ‎∵x=3时,y=2,‎ ‎∴直线PQ始终经过(3,2),‎ 故选:B.‎ ‎2.(2018•无锡)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值(  )‎ A.等于 B.等于 C.等于 D.随点E位置的变化而变化 解:∵EF∥AD,‎ ‎∴∠AFE=∠FAG,‎ ‎∴△AEH∽△ACD,‎ ‎∴==.‎ 设EH=3x,AH=4x,‎ ‎∴HG=GF=3x,‎ ‎∴tan∠AFE=tan∠FAG===.‎ 故选:A.‎ ‎ ‎ ‎3.(2018•连云港)如图,菱形ABCD的两个顶点B、D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是(  )‎ A.﹣5 B.﹣4 C.﹣3 D.﹣2‎ 解:∵四边形ABCD是菱形,‎ ‎∴BA=BC,AC⊥BD,‎ ‎∵∠ABC=60°,‎ ‎∴△ABC是等边三角形,‎ ‎∵点A(1,1),‎ ‎∴OA=,‎ ‎∴BO=,‎ ‎∵直线AC的解析式为y=x,‎ ‎∴直线BD的解析式为y=﹣x,‎ ‎∵OB=,‎ ‎∴点B的坐标为(,),‎ ‎∵点B在反比例函数y=的图象上,‎ ‎∴,‎ 解得,k=﹣3,‎ 故选:C.‎ ‎ ‎ ‎4.(2018•宿迁)如图,菱形ABCD的对角线AC、BD相交于点O,点E为边CD的中点,若菱形ABCD的周长为16,∠BAD=60°,则△OCE的面积是(  )‎ A. B.2 C.2 D.4‎ 解:过点D作DH⊥AB于点H,‎ ‎∵四边形ABCD是菱形,AO=CO,‎ ‎∴AB=BC=CD=AD,‎ ‎∵菱形ABCD的周长为16,‎ ‎∴AB=AD=4,‎ ‎∵∠BAD=60°,‎ ‎∴DH=4×=2,‎ ‎∴S菱形ABCD=4×2=8,‎ ‎∴S△ABD=×8=4,‎ ‎∵点E为边CD的中点,‎ ‎∴OE为△ADC的中位线,‎ ‎∴OE∥AD,‎ ‎∴△CEO∽△CDA,‎ ‎∴△OCE的面积=×4=,‎ 故选:A.‎ ‎ ‎ ‎5.(2018•南京)用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:‎ ‎①可能是锐角三角形;‎ ‎②可能是直角三角形;‎ ‎③可能是钝角三角形;‎ ‎④可能是平行四边形.‎ 其中所有正确结论的序号是(  )‎ A.①② B.①④ C.①②④ D.①②③④‎ 解:用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,而三角形只能是锐角三角形,不能是直角三角形和钝角三角形.‎ 故选:B.‎ ‎ ‎ ‎6.(2018•无锡)如图是一个沿3×3正方形方格纸的对角线AB剪下的图形,一质点P由A点出发,沿格点线每次向右或向上运动1个单位长度,则点P由A点运动到B点的不同路径共有(  )‎ A.4条 B.5条 C.6条 D.7条 解:如图,将各格点分别记为1、2、3、4、5、6、7,‎ 画树状图如下:‎ 由树状图可知点P由A点运动到B点的不同路径共有5种,‎ 故选:B.‎ ‎ ‎ ‎7.(2018•宿迁)在平面直角坐标系中,过点(1,2)作直线l,若直线l与两坐标轴围成的三角形面积为4,则满足条件的直线l的条数是(  )‎ A.5 B.4 C.3 D.2‎ 解:设过点(1,2)的直线l的函数解析式为y=kx+b,‎ ‎2=k+b,得b=2﹣k,‎ ‎∴y=kx+2﹣k,‎ 当x=0时,y=2﹣k,当y=0时,x=,‎ 令=4,‎ 解得,k1=﹣2,k2=6﹣4,k3=6+4,‎ 故满足条件的直线l的条数是3条,‎ 故选:C.‎ ‎ ‎ ‎8.(2018•扬州)如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:‎ ‎①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是(  )‎ A.①②③ B.① C.①② D.②③‎ 解:由已知:AC=AB,AD=AE ‎∴‎ ‎∵∠BAC=∠EAD ‎∴∠BAE=∠CAD ‎∴△BAE∽△CAD 所以①正确 ‎∵△BAE∽△CAD ‎∴∠BEA=∠CDA ‎∵∠PME=∠AMD ‎∴△PME∽△AMD ‎∴‎ ‎∴MP•MD=MA•ME 所以②正确 ‎∵∠BEA=∠CDA ‎∠PME=∠AMD ‎∴P、E、D、A四点共圆 ‎∴∠APD=∠EAD=90°‎ ‎∵∠CAE=180°﹣∠BAC﹣∠EAD=90°‎ ‎∴△CAP∽△CMA ‎∴AC2=CP•CM ‎∵AC=AB ‎∴2CB2=CP•CM 所以③正确 故选:A.‎ ‎ ‎ 二.填空题(共16小题)‎ ‎9.(2018•连云港)如图,一次函数y=kx+b的图象与x轴、y轴分别相交于A、B两点,⊙O经过A,B两点,已知AB=2,则的值为 ﹣ .‎ 解:由图形可知:△OAB是等腰直角三角形,OA=OB ‎∵AB=2,OA2+OB2=AB2‎ ‎∴OA=OB=‎ ‎∴A点坐标是(,0),B点坐标是(0,)‎ ‎∵一次函数y=kx+b的图象与x轴、y轴分别相交于A、B两点 ‎∴将A,B两点坐标代入y=kx+b,得k=﹣1,b=‎ ‎∴=﹣‎ 故答案为:﹣‎ ‎ ‎ ‎10.(2018•无锡)如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是 2≤a+2b≤5 .‎ 解:过P作PH⊥OY交于点H,‎ ‎∵PD∥OY,PE∥OX,‎ ‎∴四边形EODP是平行四边形,∠HEP=∠XOY=60°,‎ ‎∴EP=OD=a,‎ Rt△HEP中,∠EPH=30°,‎ ‎∴EH=EP=a,‎ ‎∴a+2b=2(a+b)=2(EH+EO)=2OH,‎ 当P在AC边上时,H与C重合,此时OH的最小值=OC=OA=1,即a+2b的最小值是2;‎ 当P在点B时,OH的最大值是:1+=,即(a+2b)的最大值是5,‎ ‎∴2≤a+2b≤5.‎ ‎ ‎ ‎11.(2018•南京)如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C 旋转,使所得矩形A′B′C′D′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点 F,则CF的长为 4 .‎ 解:连接OE,延长EO交CD于点G,作OH⊥B′C于点H,‎ 则∠OEB′=∠OHB′=90°,‎ ‎∵矩形ABCD绕点C旋转所得矩形为A′B′C′D′,‎ ‎∴∠B′=∠B′CD′=90°,AB=CD=5、BC=B′C=4,‎ ‎∴四边形OEB′H和四边形EB′CG都是矩形,OE=OD=OC=2.5,‎ ‎∴B′H=OE=2.5,‎ ‎∴CH=B′C﹣B′H=1.5,‎ ‎∴CG=B′E=OH===2,‎ ‎∵四边形EB′CG是矩形,‎ ‎∴∠OGC=90°,即OG⊥CD′,‎ ‎∴CF=2CG=4,‎ 故答案为:4.‎ ‎ ‎ ‎12.(2018•无锡)已知△ABC中,AB=10,AC=2,∠B=30°,则△ABC的面积等于 15或10 .‎ 解:作AD⊥BC交BC(或BC延长线)于点D,‎ ‎①如图1,当AB、AC位于AD异侧时,‎ 在Rt△ABD中,∵∠B=30°,AB=10,‎ ‎∴AD=ABsinB=5,BD=ABcosB=5,‎ 在Rt△ACD中,∵AC=2,‎ ‎∴CD===,‎ 则BC=BD+CD=6,‎ ‎∴S△ABC=•BC•AD=×6×5=15;‎ ‎②如图2,当AB、AC在AD的同侧时,‎ 由①知,BD=5,CD=,‎ 则BC=BD﹣CD=4,‎ ‎∴S△ABC=•BC•AD=×4×5=10.‎ 综上,△ABC的面积是15或10,‎ 故答案为15或10.‎ ‎ ‎ ‎13.(2018•连云港)如图,E、F,G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC,GA,GF.已知AG⊥GF,AC=,则AB的长为 2 .‎ 解:如图,连接BD.‎ ‎∵四边形ABCD是矩形,‎ ‎∴∠ADC=∠DCB=90°,AC=BD=,‎ ‎∵CG=DG,CF=FB,‎ ‎∴GF=BD=,‎ ‎∵AG⊥FG,‎ ‎∴∠AGF=90°,‎ ‎∴∠DAG+∠AGD=90°,∠AGD+∠CGF=90°,‎ ‎∴∠DAG=∠CGF,‎ ‎∴△ADG∽△GCF,设CF=BF=a,CG=DG=b,‎ ‎∴=,‎ ‎∴=,‎ ‎∴b2=2a2,‎ ‎∵a>0.b>0,‎ ‎∴b=a,‎ 在Rt△GCF中,3a2=,‎ ‎∴a=,‎ ‎∴AB=2b=2.‎ 故答案为2.‎ ‎ ‎ ‎14.(2018•盐城)如图,点D为矩形OABC的AB边的中点,反比例函数y=(x>0)的图象经过点D,交BC边于点E.若△BDE的面积为1,则k= 4 .‎ 解:设D(a,),‎ ‎∵点D为矩形OABC的AB边的中点,‎ ‎∴B(2a,),‎ ‎∴C(2a,),‎ ‎∵△BDE的面积为1,‎ ‎∴•a•(﹣)=1,解得k=4.‎ 故答案为4.‎ ‎ ‎ ‎15.(2018•淮安)如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B为圆心,大于AB的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是  .‎ 解:连接AD.‎ ‎∵PQ垂直平分线段AB,‎ ‎∴DA=DB,设DA=DB=x,‎ 在Rt△ACD中,∠C=90°,AD2=AC2+CD2,‎ ‎∴x2=32+(5﹣x)2,‎ 解得x=,‎ ‎∴CD=BC﹣DB=5﹣=,‎ 故答案为.‎ ‎ ‎ ‎16.(2018•盐城)如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分,图2中,图形的相关数据:半径OA=2cm,∠AOB=120°.则图2的周长为  cm(结果保留π).‎ 解:由图1得:的长+的长=的长 ‎∵半径OA=2cm,∠AOB=120°‎ 则图2的周长为: =‎ 故答案为:.‎ ‎ ‎ ‎17.(2018•扬州)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为 (,﹣) .‎ 解:由折叠得:∠CBO=∠DBO,‎ ‎∵矩形ABCO,‎ ‎∴BC∥OA,‎ ‎∴∠CBO=∠BOA,‎ ‎∴∠DBO=∠BOA,‎ ‎∴BE=OE,‎ 在△ODE和△BAE中,‎ ‎,‎ ‎∴△ODE≌△BAE(AAS),‎ ‎∴AE=DE,‎ 设DE=AE=x,则有OE=BE=8﹣x,‎ 在Rt△ODE中,根据勾股定理得:42+(8﹣x)2=x2,‎ 解得:x=5,即OE=5,DE=3,‎ 过D作DF⊥OA,‎ ‎∵S△OED=OD•DE=OE•DF,‎ ‎∴DF=,OF==,‎ 则D(,﹣).‎ 故答案为:(,﹣)‎ ‎ ‎ ‎18.(2018•盐城)如图,在直角△ABC中,∠C=90°,AC=6,BC=8,P、Q分别为边BC、AB上的两个动点,若要使△APQ是等腰三角形且△BPQ是直角三角形,则AQ= 或 .‎ 解:①如图1中,当AQ=PQ,∠QPB=90°时,设AQ=PQ=x,‎ ‎∵PQ∥AC,‎ ‎∴△BPQ∽△BCA,‎ ‎∴=,‎ ‎∴=,‎ ‎∴x=,‎ ‎∴AQ=.‎ ‎②当AQ=PQ,∠PQB=90°时,设AQ=PQ=y.‎ ‎∵△BQP∽△BCA,‎ ‎∴=,‎ ‎∴=,‎ ‎∴y=.‎ 综上所述,满足条件的AQ的值为或.‎ ‎ ‎ ‎19.(2018•扬州)如图,在等腰Rt△ABO,∠‎ A=90°,点B的坐标为(0,2),若直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,则m的值为  .‎ 解:∵y=mx+m=m(x+1),‎ ‎∴函数y=mx+m一定过点(﹣1,0),‎ 当x=0时,y=m,‎ ‎∴点C的坐标为(0,m),‎ 由题意可得,直线AB的解析式为y=﹣x+2,‎ ‎,得,‎ ‎∵直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,‎ ‎∴,‎ 解得,m=或m=(舍去),‎ 故答案为:.‎ ‎ ‎ ‎20.(2018•泰州)如图,四边形ABCD中,AC平分∠BAD,∠ACD=∠ABC=90°,E、F分别为AC、CD的中点,∠D=α,则∠BEF的度数为 270°﹣3α (用含α的式子表示).‎ 解:∵∠ACD=90°,∠D=α,‎ ‎∴∠DAC=90°﹣α,‎ ‎∵AC平分∠BAD,‎ ‎∴∠DAC=∠BAC=90°﹣α,‎ ‎∵∠ABC=90°,EAC的中点,‎ ‎∴BE=AE=EC,‎ ‎∴∠EAB=∠EBA=90°﹣α,‎ ‎∴∠CEB=180°﹣2α,‎ ‎∵E、F分别为AC、CD的中点,‎ ‎∴EF∥AD,‎ ‎∴∠CEF=∠D=α,‎ ‎∴∠BEF=180°﹣2α+90°﹣α=270°﹣3α,‎ 故答案为:270°﹣3α.‎ ‎ ‎ ‎.(2018•宿迁)如图,将含有30°角的直角三角板ABC放入平面直角坐标系,顶点A、B分别落在x、y轴的正半轴上,∠OAB=60°,点A的坐标为(1,0).将三角板ABC沿x轴向右作无滑动的滚动(先绕点A按顺时针方向旋转60°,再绕点C按顺时针方向旋转90°…),当点B第一次落在x轴上时,则点B运动的路径与两坐标轴围成的图形面积是  .‎ 解:由点A的坐标为(1,0).得OA=1,又∵∠OAB=60°,∴AB=2,‎ ‎∵∠ABC=30°,AB=2,∴AC=1,BC=,‎ 在旋转过程中,三角板的长度和角度不变,‎ ‎∴点B运动的路径与两坐标轴围成的图形面积=.‎ 故答案:‎ ‎ ‎ ‎22.(2018•泰州)如图,△ABC中,∠ACB=90°,sinA=,AC=12,将△ABC绕点C顺时针旋转90°得到△A'B'C,P为线段A′B'上的动点,以点P为圆心,PA′长为半径作⊙P,当⊙P与△ABC的边相切时,⊙P的半径为 或 .‎ 解:如图1中,当⊙P与直线AC相切于点Q时,连接PQ.‎ 设PQ=PA′=r,‎ ‎∵PQ∥CA′,‎ ‎∴=,‎ ‎∴=,‎ ‎∴r=.‎ 如图2中,当⊙P与AB相切于点T时,易证A′、B′、T共线,‎ ‎∵△A′BT∽△ABC,‎ ‎∴=,‎ ‎∴=,‎ ‎∴A′T=,‎ ‎∴r=A′T=.‎ 综上所述,⊙P的半径为或.‎ ‎ ‎ ‎23.(2018•宿迁)如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与正比例函数y=kx、y=x(k>1)的图象分别交于点A、B.若∠AOB=45°,则△AOB的面积是 2 .‎ 解:如图,过B作BC⊥x轴于点D,过A作AC⊥y轴于点C 设点A横坐标为a,则A(a,)‎ ‎∵A在正比例函数y=kx图象上 ‎∴=ka ‎∴k=‎ 同理,设点B横坐标为b,则B(b,)‎ ‎∴=‎ ‎∴‎ ‎∴‎ ‎∴ab=2‎ 当点A坐标为(a,)时,点B坐标为(,a)‎ ‎∴OC=OD 将△AOC绕点O顺时针旋转90°,得到△ODA′‎ ‎∵BD⊥x轴 ‎∴B、D、A′共线 ‎∵∠AOB=45°,∠AOA′=90°‎ ‎∴∠BOA′=45°‎ ‎∵OA=OA′,OD=OD ‎∴△AOB≌△A′OB ‎∵S△BOD=S△AOC=2×=1‎ ‎∴S△AOB=2‎ 故答案为:2‎ ‎ ‎ ‎24.(2018•淮安)如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形AnBnCnDn的面积是 ()n﹣1 .‎ 解:∵直线l为正比例函数y=x的图象,‎ ‎∴∠D1OA1=45°,‎ ‎∴D1A1=OA1=1,‎ ‎∴正方形A1B1C1D1的面积=1=()1﹣1,‎ 由勾股定理得,OD1=,D1A2=,‎ ‎∴A2B2=A2O=,‎ ‎∴正方形A2B2C2D2的面积==()2﹣1,‎ 同理,A3D3=OA3=,‎ ‎∴正方形A3B3C3D3的面积==()3﹣1,‎ ‎…‎ 由规律可知,正方形AnBnCnDn的面积=()n﹣1,‎ 故答案为:()n﹣1.‎ ‎ ‎