• 1.33 MB
  • 2021-05-13 发布

2008年辽宁省十二市中考数学考试

  • 14页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
2008 年辽宁省十二市初中毕业生学业考试 数学试卷(六三制) *考试时间 120 分钟 试卷满分 150 分 一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号填入下面 表格内,每小题 3 分,共 24 分) 题号 1 2 3 4 5 6 7 8 答案 1.截止 2008 年 6 月 7 日 12 时,全国各地支援四川地震灾区的临时安置房已经安装了 40600 套.这个数用科学记数法表示为( ) A. 50.406 10 套 B. 44.06 10 套 C. 340.6 10 套 D. 2406 10 套 2.如图 1,直线 1 2l l∥ ,l 分别与 1 2l l, 相交,如果 2 120   , 那么 1 的度数是( ) A.30 B. 45 C. 60 D. 75 3.下列事件中是必然事件的是( ) A.阴天一定下雨 B.随机掷一枚质地均匀的硬币,正面朝上 C.男生的身高一定比女生高 D.将油滴在水中,油会浮在水面上 4.图 2 是由几个相同的小正方体搭成的一个几何体,它的俯视图是( ) 图 2 A. B. C. D. 5.下列命题中正确的是( ) A.两条对角线互相平分的四边形是平行四边形 B.两条对角线相等的四边形是矩形 C.两条对角线互相垂直的四边形是菱形 D.两条对角线互相垂直且平分的四边形是正方形 6.若反比例函数 ( 0)ky kx   的图象经过点 (2 1), ,则这个函数的图象一定经过点( ) A. 1 22     , B. (1 2), C. 11 2     , D. (1 2), 7.不等式组 2 1 3 3 x x     ≤ 的解集在数轴上表示正确的是( ) l l1 l2 1 2 图 1 -3 10 A. -3 10 B. -3 10 C. -3 10 D. 8.图 3 是对称中心为点O 的正八边形.如果用一个含 45 角的直角三角板的角,借助点O (使角的顶点落在点O 处)把这个正八边形的面积 n 等分. 那么 n 的所有可能的值有( ) A.2 个 B.3 个 C.4 个 D.5 个 二、填空题(每小题 3 分,共 24 分) 9.分解因式: 3 4x y xy  . 10.体育老师对甲、乙两名同学分别进行了 8 次跳高测试,经计算这两名同学成绩的平均数 相同,甲同学的方差是 2 6.4S 甲 ,乙同学的方差是 2 8.2S 乙 ,那么这两名同学跳高成绩比 较稳定的是 同学. 11.一元二次方程 2 2 1 0x x   的解是 . 12.如图 4, D E, 分别是 ABC△ 的边 AB AC, 上的点, DE BC∥ , 2AD DB  ,则 :ADE ABCS S △ △ . A E C D B 图 4 图 5 13.如图 5,假设可以在图中每个小正方形内任意取点(每个小正方形除颜色外完全相同), 那么这个点取在阴影部分的概率是 . 14.一个圆锥底面周长为 4cm,母线长为 5cm,则这个圆锥的侧面积是 . 15.如图 6,观察下列图案,它们都是由边长为 1cm 的小正方形按一定规律拼接而成的,依 此规律,则第 16 个图案中的小正方形有 个. 图案 1 图案 2 图案 3 图案 4 …… 图 6 16.如图 7,直线 3 33y x  与 x 轴、 y 轴分别相交于 A B, 两点,圆心 P 的坐标为 (1 0), , P 与 y 轴相切于点O .若将 P 沿 x 轴向左移动,当 P 与该直线相交时,横坐标为整数的点 P 图 3 O x yB A 图 7 P 有 个. 三、(每小题 8 分,共 16 分) 17.先化简,再求值: 23 1 1 1 a a a a a a      ,其中 2a  . 18.如图 8 所示,在网格中建立了平面直角坐标系,每个小正方形的边长均为 1 个单位长度, 将四边形 ABCD 绕坐标原点O 按顺时针方向旋转180 后得到四边形 1 1 1 1A B C D . (1)直接写出 1D 点的坐标; (2)将四边形 1 1 1 1A B C D 平移,得到四边形 2 2 2 2A B C D ,若 2 (4 5)D , ,画出平移后的图形.(友 情提示:画图时请不要涂错阴影的位置哦!) 四、(每小题 10 分,共 20 分) 19.如图 9,有四张背面相同的纸牌 A B C D, , , ,其正面分别画有四个不同的图形,小 明将这四张纸牌背面朝上洗匀后随机摸出一张,放回后洗匀再随机摸出一张. (1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用 A B C D, , , 表 示); (2)求两次摸牌的牌面图形既是中心对称图形又是轴对称图形的概率. 图 8 图 9 20.如图 10, AB 为 O 的直径, D 为弦 BE 的中点,连接OD 并延长交 O 于点 F ,与 过 B 点的切线相交于点 C .若点 E 为 AF 的中点,连接 AE . 求证: ABE OCB△ ≌△ . 五、(每小题 10 分,共 20 分) 21.某中学开展以“我最喜欢的职业”为主题的调查活动.通过对学生的随机抽样调查得到 一组数据,下面两图(如图 11、图 12)是根据这组数据绘制的两幅不完整的统计图.请你 根据图中所提供的信息解答下列问题: (1)求在这次活动中一共调查了多少名学生? (2)在扇形统计图中,求“教师”所在扇形的圆心角的度数. (3)补全两幅统计图. 22.在“汶川地震”捐款活动中,某同学对甲、乙两班捐款情况进行了统计:甲班捐款人数 比乙班捐款人数多 3 人,甲班共捐款 2400 元,乙班共捐款 1800 元,乙班平均每人捐款的钱 数是甲班平均每人捐款钱数的 4 5 倍.求甲、乙两班各有多少人捐款? 六、(每小题 10 分,共 20 分) 23.如图 13,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距 离 ( )AB 是 1.7m,看旗杆顶部 M 的仰角为 45 ;小红的眼睛与地面的距离 ( )CD 是 1.5m, 图 10 O D B C FE A 人数 教师 医生公务员军人其它 80 60 40 20 0 其它 教师 医生 公务员军人职业 10% 20% 15% 图 11 图 12 看旗杆顶部 M 的仰角为30 .两人相距 28 米且位于旗杆两侧(点 B N D, , 在同一条直线 上). 请求出旗杆 MN 的高度.(参考数据: 2 1.4≈ , 3 1.7≈ ,结果保留整数) 24.2008 年 6 月 1 日起,我国实施“限塑令”,开始有偿使用环保购物袋.为了满足市场需 求,某厂家生产 A B, 两种款式的布质环保购物袋,每天共生产 4500 个,两种购物袋的成 本和售价如下表,设每天生产 A 种购物袋 x 个,每天共获利 y 元. 成本(元/个) 售价(元/个) A 2 2.3 B 3 3.5 (1)求出 y 与 x 的函数关系式; (2)如果该厂每天最多投入成本 10000 元,那么每天最多获利多少元? 七、(本题 12 分) 25.如图 14,在 Rt ABC△ 中, 90A   ,AB AC , 4 2BC  ,另有一等腰梯形 DEFG ( GF DE∥ )的底边 DE 与 BC 重合,两腰分别落在 AB AC, 上,且 G F, 分别是 AB AC, 的中点. (1)求等腰梯形 DEFG 的面积; (2)操作:固定 ABC△ ,将等腰梯形 DEFG 以每秒 1 个单位的速度沿 BC 方向向右运动, 直到点 D 与点C 重合时停止.设运动时间为 x 秒,运动后的等腰梯形为 DEF G (如图 15). 探究 1:在运动过程中,四边形 BDG G 能否是菱形?若能,请求出此时 x 的值;若不能, 请说明理由. M NB A D C30°45° 图 13 A FG (D)B C(E) 图 14 探究 2:设在运动过程中 ABC△ 与等腰梯形 DEFG 重叠部分的面积为 y ,求 y 与 x 的函数 关系式. 八、(本题 14 分) 26.如图 16,在平面直角坐标系中,直线 3 3y x   与 x 轴交于点 A ,与 y 轴交于点C , 抛物线 2 2 3 ( 0)3y ax x c a    经过 A B C, , 三点. (1)求过 A B C, , 三点抛物线的解析式并求出顶点 F 的坐标; (2)在抛物线上是否存在点 P ,使 ABP△ 为直角三角形,若存在,直接写出 P 点坐标; 若不存在,请说明理由; (3)试探究在直线 AC 上是否存在一点 M ,使得 MBF△ 的周长最小,若存在,求出 M 点 的坐标;若不存在,请说明理由. FG A FG B D C E 图 15 A O x y B F C 图 16 2008 年辽宁省十二市初中毕业生学业考试 数学试卷(六三制)答案 一、选择题(每小题 3 分,共 24 分) 题号 1 2 3 4 5 6 7 8 答案 B C D D A D A B 二、填空题(每小题 3 分,共 24 分) 9. ( 2)( 2)xy x x  10.甲 11. 1 2 1x x  12. 4:9 13. 7 25 14. 210 cm (丢单位扣 1 分) 15.136 16.3 三、(每小题 8 分,共 16 分) 17.解法一:原式 2 2 3 ( 1) ( 1) 1 1 a a a a a a a      ··················································· 2 分 2 4a  ········································································································6 分 当 2a  时,原式 2 2 4 8    ·········································································8 分 解法二:原式 3 ( 1)( 1) ( 1)( 1) 1 1 a a a a a a a a a a         ······································2 分 2 4a  ········································································································6 分 当 2a  时,原式 2 2 4 8    ·········································································8 分 18.解: (1) 1(3 1)D , ·······························································································2 分 (2) 2A , 2 2 2B C D, , 描对一个点给 1 分.························································6 分 画出正确图形(见图 1)··················································································· 8 分 图 1 四、(每小题 10 分,共 20 分) 19.(1)解法一: A B C D A (A,A) (A,B) (A,C) (A,D) B (B,A) (B,B) (B,C) (B,D) C (C,A) (C,B) (C,C) (C,D) D (D,A) (D,B) (D,C) (D,D) ············································ 6 分 (2)从表中可以得到,两次摸牌所有可能出现的结果共有 16 种,其中既是中心对称图形又 是轴对称图形的有 9 种.·················································································· 8 分 故所求概率是 9 16 .························································································ 10 分 19.(1)解法二: A B C D A A B C D B A B C D C A B C D D 开始 第一次牌面的字母 第二次牌面的字母 所以可能出现的结果:(A,A),(A,B),(A,C),(A,D),(B,A),(B,B),(B,C), (B,D),(C,A),(C,B),(C,C),(C,D),(D,A),(D,B),(D,C),(D,D). ········································································6 分 (2)以下同解法 1. 20.解:(1)证明:如图 2. AB 是 O 的直径. 90E   ································································1 分 又 BC 是 O 的切线, 90OBC   E OBC   ·························································· 3 分 OD 过圆心, BD DE ,  EF FB  BOC A   .··························································································· 6 分 E 为 AF 中点,   EF BF AE   30ABE   ······························································································· 8 分 90E   第二次 第一次 图 2 O D B C FE A 1 2AE AB OB   ························································································ 9 分 ABE OCB△ ≌△ .····················································································10 分 五、(每小题 10 分,共 20 分) 21. (1)被调查的学生数为 40 20020 % (人)·························································· 2 分 (2)“教师”所在扇形的圆心角的度数为 701 15 20 10 100 360 72200            % % % % ················································5 分 (3)如图 3,补全图························································································8 分 如图 4,补全图······························································································10 分 人数 教师 医生公务员军人其它 80 60 40 20 0 其它 教师 医生 公务员军人职业 10% 20% 15% 图 3 图 4 35% 20% 22.解法一:设乙班有 x 人捐款,则甲班有 ( 3)x  人捐款.···································· 1 分 根据题意得: 2400 4 1800 3 5x x   ····························································································5 分 解这个方程得 45x  .·····················································································8 分 经检验 45x  是所列方程的根.·········································································9 分 3 48x   (人) 答:甲班有 48 人捐款,乙班有 45 人捐款.·························································10 分 解法二:设甲班有 x 人捐款,则乙班有 ( 3)x  人捐款.·········································· 1 分 根据题意得: 2400 4 1800 5 3x x    ····························································································5 分 解这个方程得 48x  .·····················································································8 分 经检验 48x  是所列方程的根.·········································································9 分 3 45x   (人) 答:甲班有 48 人捐款,乙班有 45 人捐款.·························································10 分 六、(每小题 10 分,共 20 分) 23.解法一: 解:过点 A 作 AE MN 于 E ,过点C 作CF MN 于 F ,·································· 1 分 则 1.7 1.5 0.2EF AB CD     ·····································································2 分 在 Rt AEM△ 中, 90AEM   , 45MAE   AE ME  ···································································································3 分 设 AE ME x  (不设参数也可) 0.2MF x   , 28FC x  ································5 分 在 Rt MFC△ 中, 90MFC   , 30MCF   tanMF CF MCF   30.2 (28 )3x x    ·········································· 7 分 10.0x ≈ 12MN ≈ ···································································································9 分 答:旗杆高约为 12 米.·················································································· 10 分 解法二:解:过点 A 作 AE MN 于 E ,过点C 作CF MN 于 F ,······················ 1 分 则 1.7 1.5 0.2EF AB CD     ·····································································2 分 在 Rt AEM△ 中, 90AEM   , 45MAE   AE ME  设 AE x ,则 0.2MF x  ·············································································3 分 在 Rt MFC△ 中, 90MFC   , 30MCF   tan 60 3( 0.2)CF MF x   ······································································· 5 分 BN ND BD  3( 0.2) 28x x    ·····················································································7 分 解得 10.2x ≈ 12MN ≈ ···································································································9 分 答:旗杆高约为 12 米.·················································································· 10 分 (注:其他方法参照给分) 24.解: (1)根据题意得: (2.3 2) (3.5 3)(4500 ) 0.2 2250y x x x        ···················· 2 分 (2)根据题意得: 2 3(4500 ) 10000x x  ≤ ······················································5 分 解得 3500x≥ 元·····························································································6 分 0.2 0k    , y 随 x 增大而减小································································· 8 分 当 3500x  时 0.2 3500 2250 1550y      ········································································· 9 分 答:该厂每天至多获利 1550 元.······································································ 10 分 七、(本题 12 分) 25.解:如图 6,(1)过点G 作GM BC 于 M . AB AC , 90BAC   , 4 2BC  ,G 为 AB 中点 M NB A D C30°45° 图 5 EF 2GM  .········································· 1 分 又 G F , 分别为 AB AC, 的中点 1 2 22GF BC   ·································2 分 1 (2 2 4 2) 2 62DEFGS    梯形 等腰梯形 DEFG 的面积为 6.········································································ 3 分 (2)能为菱形································································································ 4 分 如图 7,由 BG DG∥ ,GG BC∥ 四边形 BDG G 是平行四边形····················6 分 当 1 22BD BG AB   时,四边形 BDG G 为菱形, 此时可求得 2x  当 2x  秒时,四边形 BDG G 为菱形.······8 分 (3)分两种情况: ①当 0 2 2x ≤ 时, 方法一: 2GM  , 2BDG GS x  重叠部分的面积为: 6 2y x  当 0 2 2x ≤ 时, y 与 x 的函数关系式为 6 2y x  ···································· 10 分 方法二:当 0 2 2x ≤ 时, 2 2FG x   , 4 2DC x  , 2GM  重叠部分的面积为: (2 2 ) (4 2 ) 2 6 22 x xy x      当 0 2 2x ≤ 时, y 与 x 的函数关系式为 6 2y x  ···································· 10 分 ②当 2 2 4 2x≤ ≤ 时, 设 FC 与 DG 交于点 P ,则 45PDC PCD     90CPD   , PC PD 作 PQ DC 于Q ,则 1 (4 2 )2PQ DQ QC x    重叠部分的面积为: A FG (D)B C(E) 图 6M FG A FG B D C E 图 7 M FG A FG B C E 图 8 QD P 2 21 1 1 1(4 2 ) (4 2 ) (4 2 ) 2 2 82 2 4 4y x x x x x         ···························12 分 八、(本题 14 分) 26.解:(1)直线 3 3y x   与 x 轴交于点 A ,与 y 轴交于点C . ( 1 0)A  , , (0 3)C , ···················································································1 分 点 A C, 都在抛物线上, 2 30 3 3 a c c       3 3 3 a c      抛物线的解析式为 23 2 3 33 3y x x   ······················································ 3 分 顶点 4 31 3F      , ························································································4 分 (2)存在······································································································ 5 分 1(0 3)P , ···································································································· 7 分 2 (2 3)P , ····································································································9 分 (3)存在·····································································································10 分 理由: 解法一: 延长 BC 到点 B,使 B C BC  ,连接 B F 交直线 AC 于点 M ,则点 M 就是所求的点. ················································································11 分 过点 B作 B H AB  于点 H . B 点在抛物线 23 2 3 33 3y x x   上, (3 0)B , 在 Rt BOC△ 中, 3tan 3OBC  , 30OBC   , 2 3BC  , 在 Rt BB H△ 中, 1 2 32B H BB   , 3 6BH B H  , 3OH  , ( 3 2 3)B  , ···············································12 分 设直线 B F 的解析式为 y kx b  A O x y B F C 图 9 H B M 2 3 3 4 3 3 k b k b        解得 3 6 3 3 2 k b      3 3 3 6 2y x   ·························································································13 分 3 3 3 3 3 6 2 y x y x       解得 3 7 10 3 7 x y      , 3 10 3 7 7M       , 在直线 AC 上存在点 M ,使得 MBF△ 的周长最小,此时 3 10 3 7 7M      , .········14 分 解法二: 过点 F 作 AC 的垂线交 y 轴于点 H ,则点 H 为点 F 关于直线 AC 的对称点.连接 BH 交 AC 于点 M ,则点 M 即为所求.································· 11 分 过点 F 作 FG y 轴于点G ,则OB FG∥ , BC FH∥ . 90BOC FGH     , BCO FHG   HFG CBO   同方法一可求得 (3 0)B , . 在 Rt BOC△ 中, 3tan 3OBC  , 30OBC   ,可求得 3 3GH GC  , GF 为线段CH 的垂直平分线,可证得 CFH△ 为等边三角形, AC 垂直平分 FH . 即点 H 为点 F 关于 AC 的对称点. 5 30 3H       , ············································ 12 分 设直线 BH 的解析式为 y kx b  ,由题意得 0 3 5 33 k b b     解得 5 39 5 33 k b      5 53 39 3y   ·························································································13 分 A O x y B F C 图 10 H MG 5 53 39 3 3 3 y x y x        解得 3 7 10 3 7 x y      3 10 3 7 7M       , 在直线 AC 上存在点 M ,使得 MBF△ 的周长最小,此时 3 10 3 7 7M      , . 1