- 1.33 MB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2008 年辽宁省十二市初中毕业生学业考试
数学试卷(六三制)
*考试时间 120 分钟 试卷满分 150 分
一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号填入下面
表格内,每小题 3 分,共 24 分)
题号 1 2 3 4 5 6 7 8
答案
1.截止 2008 年 6 月 7 日 12 时,全国各地支援四川地震灾区的临时安置房已经安装了 40600
套.这个数用科学记数法表示为( )
A. 50.406 10 套 B. 44.06 10 套
C. 340.6 10 套 D. 2406 10 套
2.如图 1,直线 1 2l l∥ ,l 分别与 1 2l l, 相交,如果 2 120 ,
那么 1 的度数是( )
A.30 B. 45 C. 60 D. 75
3.下列事件中是必然事件的是( )
A.阴天一定下雨
B.随机掷一枚质地均匀的硬币,正面朝上
C.男生的身高一定比女生高
D.将油滴在水中,油会浮在水面上
4.图 2 是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )
图 2 A. B. C. D.
5.下列命题中正确的是( )
A.两条对角线互相平分的四边形是平行四边形
B.两条对角线相等的四边形是矩形
C.两条对角线互相垂直的四边形是菱形
D.两条对角线互相垂直且平分的四边形是正方形
6.若反比例函数 ( 0)ky kx
的图象经过点 (2 1), ,则这个函数的图象一定经过点( )
A. 1 22
, B. (1 2), C. 11 2
, D. (1 2),
7.不等式组 2 1 3
3
x
x
≤
的解集在数轴上表示正确的是( )
l
l1
l2
1
2
图 1
-3 10
A.
-3 10
B.
-3 10
C.
-3 10
D.
8.图 3 是对称中心为点O 的正八边形.如果用一个含 45 角的直角三角板的角,借助点O
(使角的顶点落在点O 处)把这个正八边形的面积 n 等分.
那么 n 的所有可能的值有( )
A.2 个 B.3 个 C.4 个 D.5 个
二、填空题(每小题 3 分,共 24 分)
9.分解因式: 3 4x y xy .
10.体育老师对甲、乙两名同学分别进行了 8 次跳高测试,经计算这两名同学成绩的平均数
相同,甲同学的方差是 2 6.4S 甲 ,乙同学的方差是 2 8.2S 乙 ,那么这两名同学跳高成绩比
较稳定的是 同学.
11.一元二次方程 2 2 1 0x x 的解是 .
12.如图 4, D E, 分别是 ABC△ 的边 AB AC, 上的点, DE BC∥ , 2AD
DB
,则
:ADE ABCS S △ △ .
A
E
C
D
B
图 4 图 5
13.如图 5,假设可以在图中每个小正方形内任意取点(每个小正方形除颜色外完全相同),
那么这个点取在阴影部分的概率是 .
14.一个圆锥底面周长为 4cm,母线长为 5cm,则这个圆锥的侧面积是 .
15.如图 6,观察下列图案,它们都是由边长为 1cm 的小正方形按一定规律拼接而成的,依
此规律,则第 16 个图案中的小正方形有 个.
图案 1 图案 2 图案 3 图案 4
……
图 6
16.如图 7,直线 3 33y x 与 x 轴、 y 轴分别相交于 A B,
两点,圆心 P 的坐标为 (1 0), , P 与 y 轴相切于点O .若将 P
沿 x 轴向左移动,当 P 与该直线相交时,横坐标为整数的点 P
图 3
O x
yB
A
图 7
P
有 个.
三、(每小题 8 分,共 16 分)
17.先化简,再求值:
23 1
1 1
a a a
a a a
,其中 2a .
18.如图 8 所示,在网格中建立了平面直角坐标系,每个小正方形的边长均为 1 个单位长度,
将四边形 ABCD 绕坐标原点O 按顺时针方向旋转180 后得到四边形 1 1 1 1A B C D .
(1)直接写出 1D 点的坐标;
(2)将四边形 1 1 1 1A B C D 平移,得到四边形 2 2 2 2A B C D ,若 2 (4 5)D , ,画出平移后的图形.(友
情提示:画图时请不要涂错阴影的位置哦!)
四、(每小题 10 分,共 20 分)
19.如图 9,有四张背面相同的纸牌 A B C D, , , ,其正面分别画有四个不同的图形,小
明将这四张纸牌背面朝上洗匀后随机摸出一张,放回后洗匀再随机摸出一张.
(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用 A B C D, , , 表
示);
(2)求两次摸牌的牌面图形既是中心对称图形又是轴对称图形的概率.
图 8
图 9
20.如图 10, AB 为 O 的直径, D 为弦 BE 的中点,连接OD 并延长交 O 于点 F ,与
过 B 点的切线相交于点 C .若点 E 为 AF 的中点,连接 AE .
求证: ABE OCB△ ≌△ .
五、(每小题 10 分,共 20 分)
21.某中学开展以“我最喜欢的职业”为主题的调查活动.通过对学生的随机抽样调查得到
一组数据,下面两图(如图 11、图 12)是根据这组数据绘制的两幅不完整的统计图.请你
根据图中所提供的信息解答下列问题:
(1)求在这次活动中一共调查了多少名学生?
(2)在扇形统计图中,求“教师”所在扇形的圆心角的度数.
(3)补全两幅统计图.
22.在“汶川地震”捐款活动中,某同学对甲、乙两班捐款情况进行了统计:甲班捐款人数
比乙班捐款人数多 3 人,甲班共捐款 2400 元,乙班共捐款 1800 元,乙班平均每人捐款的钱
数是甲班平均每人捐款钱数的 4
5
倍.求甲、乙两班各有多少人捐款?
六、(每小题 10 分,共 20 分)
23.如图 13,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距
离 ( )AB 是 1.7m,看旗杆顶部 M 的仰角为 45 ;小红的眼睛与地面的距离 ( )CD 是 1.5m,
图 10
O
D
B
C
FE
A
人数
教师 医生公务员军人其它
80
60
40
20
0
其它 教师
医生
公务员军人职业 10% 20%
15%
图 11 图 12
看旗杆顶部 M 的仰角为30 .两人相距 28 米且位于旗杆两侧(点 B N D, , 在同一条直线
上).
请求出旗杆 MN 的高度.(参考数据: 2 1.4≈ , 3 1.7≈ ,结果保留整数)
24.2008 年 6 月 1 日起,我国实施“限塑令”,开始有偿使用环保购物袋.为了满足市场需
求,某厂家生产 A B, 两种款式的布质环保购物袋,每天共生产 4500 个,两种购物袋的成
本和售价如下表,设每天生产 A 种购物袋 x 个,每天共获利 y 元.
成本(元/个) 售价(元/个)
A 2 2.3
B 3 3.5
(1)求出 y 与 x 的函数关系式;
(2)如果该厂每天最多投入成本 10000 元,那么每天最多获利多少元?
七、(本题 12 分)
25.如图 14,在 Rt ABC△ 中, 90A ,AB AC , 4 2BC ,另有一等腰梯形 DEFG
( GF DE∥ )的底边 DE 与 BC 重合,两腰分别落在 AB AC, 上,且 G F, 分别是
AB AC, 的中点.
(1)求等腰梯形 DEFG 的面积;
(2)操作:固定 ABC△ ,将等腰梯形 DEFG 以每秒 1 个单位的速度沿 BC 方向向右运动,
直到点 D 与点C 重合时停止.设运动时间为 x 秒,运动后的等腰梯形为 DEF G (如图 15).
探究 1:在运动过程中,四边形 BDG G 能否是菱形?若能,请求出此时 x 的值;若不能,
请说明理由.
M
NB
A
D
C30°45°
图 13
A
FG
(D)B C(E)
图 14
探究 2:设在运动过程中 ABC△ 与等腰梯形 DEFG 重叠部分的面积为 y ,求 y 与 x 的函数
关系式.
八、(本题 14 分)
26.如图 16,在平面直角坐标系中,直线 3 3y x 与 x 轴交于点 A ,与 y 轴交于点C ,
抛物线 2 2 3 ( 0)3y ax x c a 经过 A B C, , 三点.
(1)求过 A B C, , 三点抛物线的解析式并求出顶点 F 的坐标;
(2)在抛物线上是否存在点 P ,使 ABP△ 为直角三角形,若存在,直接写出 P 点坐标;
若不存在,请说明理由;
(3)试探究在直线 AC 上是否存在一点 M ,使得 MBF△ 的周长最小,若存在,求出 M 点
的坐标;若不存在,请说明理由.
FG
A
FG
B D C E
图 15
A O x
y
B
F
C
图 16
2008 年辽宁省十二市初中毕业生学业考试
数学试卷(六三制)答案
一、选择题(每小题 3 分,共 24 分)
题号 1 2 3 4 5 6 7 8
答案 B C D D A D A B
二、填空题(每小题 3 分,共 24 分)
9. ( 2)( 2)xy x x 10.甲 11. 1 2 1x x 12. 4:9 13. 7
25
14. 210 cm (丢单位扣 1 分) 15.136 16.3
三、(每小题 8 分,共 16 分)
17.解法一:原式
2
2
3 ( 1) ( 1) 1
1
a a a a a
a a
··················································· 2 分
2 4a ········································································································6 分
当 2a 时,原式 2 2 4 8 ·········································································8 分
解法二:原式 3 ( 1)( 1) ( 1)( 1)
1 1
a a a a a a
a a a a
······································2 分
2 4a ········································································································6 分
当 2a 时,原式 2 2 4 8 ·········································································8 分
18.解:
(1) 1(3 1)D , ·······························································································2 分
(2) 2A , 2 2 2B C D, , 描对一个点给 1 分.························································6 分
画出正确图形(见图 1)··················································································· 8 分
图 1
四、(每小题 10 分,共 20 分)
19.(1)解法一:
A B C D
A (A,A) (A,B) (A,C) (A,D)
B (B,A) (B,B) (B,C) (B,D)
C (C,A) (C,B) (C,C) (C,D)
D (D,A) (D,B) (D,C) (D,D)
············································ 6 分
(2)从表中可以得到,两次摸牌所有可能出现的结果共有 16 种,其中既是中心对称图形又
是轴对称图形的有 9 种.·················································································· 8 分
故所求概率是 9
16
.························································································ 10 分
19.(1)解法二:
A B C D
A
A B C D
B
A B C D
C
A B C D
D
开始
第一次牌面的字母
第二次牌面的字母
所以可能出现的结果:(A,A),(A,B),(A,C),(A,D),(B,A),(B,B),(B,C),
(B,D),(C,A),(C,B),(C,C),(C,D),(D,A),(D,B),(D,C),(D,D).
········································································6 分
(2)以下同解法 1.
20.解:(1)证明:如图 2.
AB 是 O 的直径.
90E ································································1 分
又 BC 是 O 的切线, 90OBC
E OBC ·························································· 3 分
OD 过圆心, BD DE ,
EF FB
BOC A .··························································································· 6 分
E 为 AF 中点,
EF BF AE
30ABE ······························································································· 8 分
90E
第二次
第一次
图 2
O
D
B
C
FE
A
1
2AE AB OB ························································································ 9 分
ABE OCB△ ≌△ .····················································································10 分
五、(每小题 10 分,共 20 分)
21.
(1)被调查的学生数为 40 20020
% (人)·························································· 2 分
(2)“教师”所在扇形的圆心角的度数为
701 15 20 10 100 360 72200
% % % % ················································5 分
(3)如图 3,补全图························································································8 分
如图 4,补全图······························································································10 分
人数
教师 医生公务员军人其它
80
60
40
20
0
其它 教师
医生
公务员军人职业 10% 20%
15%
图 3 图 4
35% 20%
22.解法一:设乙班有 x 人捐款,则甲班有 ( 3)x 人捐款.···································· 1 分
根据题意得:
2400 4 1800
3 5x x
····························································································5 分
解这个方程得 45x .·····················································································8 分
经检验 45x 是所列方程的根.·········································································9 分
3 48x (人)
答:甲班有 48 人捐款,乙班有 45 人捐款.·························································10 分
解法二:设甲班有 x 人捐款,则乙班有 ( 3)x 人捐款.·········································· 1 分
根据题意得:
2400 4 1800
5 3x x
····························································································5 分
解这个方程得 48x .·····················································································8 分
经检验 48x 是所列方程的根.·········································································9 分
3 45x (人)
答:甲班有 48 人捐款,乙班有 45 人捐款.·························································10 分
六、(每小题 10 分,共 20 分)
23.解法一:
解:过点 A 作 AE MN 于 E ,过点C 作CF MN 于 F ,·································· 1 分
则 1.7 1.5 0.2EF AB CD ·····································································2 分
在 Rt AEM△ 中, 90AEM , 45MAE
AE ME ···································································································3 分
设 AE ME x (不设参数也可)
0.2MF x , 28FC x ································5 分
在 Rt MFC△ 中, 90MFC , 30MCF
tanMF CF MCF
30.2 (28 )3x x ·········································· 7 分
10.0x ≈
12MN ≈ ···································································································9 分
答:旗杆高约为 12 米.·················································································· 10 分
解法二:解:过点 A 作 AE MN 于 E ,过点C 作CF MN 于 F ,······················ 1 分
则 1.7 1.5 0.2EF AB CD ·····································································2 分
在 Rt AEM△ 中, 90AEM , 45MAE
AE ME
设 AE x ,则 0.2MF x ·············································································3 分
在 Rt MFC△ 中, 90MFC , 30MCF
tan 60 3( 0.2)CF MF x ······································································· 5 分
BN ND BD
3( 0.2) 28x x ·····················································································7 分
解得 10.2x ≈
12MN ≈ ···································································································9 分
答:旗杆高约为 12 米.·················································································· 10 分
(注:其他方法参照给分)
24.解:
(1)根据题意得: (2.3 2) (3.5 3)(4500 ) 0.2 2250y x x x ···················· 2 分
(2)根据题意得: 2 3(4500 ) 10000x x ≤ ······················································5 分
解得 3500x≥ 元·····························································································6 分
0.2 0k , y 随 x 增大而减小································································· 8 分
当 3500x 时
0.2 3500 2250 1550y ········································································· 9 分
答:该厂每天至多获利 1550 元.······································································ 10 分
七、(本题 12 分)
25.解:如图 6,(1)过点G 作GM BC 于 M .
AB AC , 90BAC , 4 2BC ,G 为 AB 中点
M
NB
A
D
C30°45°
图 5
EF
2GM .········································· 1 分
又 G F , 分别为 AB AC, 的中点
1 2 22GF BC ·································2 分
1 (2 2 4 2) 2 62DEFGS 梯形
等腰梯形 DEFG 的面积为 6.········································································ 3 分
(2)能为菱形································································································ 4 分
如图 7,由 BG DG∥ ,GG BC∥
四边形 BDG G 是平行四边形····················6 分
当 1 22BD BG AB 时,四边形 BDG G 为菱形,
此时可求得 2x
当 2x 秒时,四边形 BDG G 为菱形.······8 分
(3)分两种情况:
①当 0 2 2x ≤ 时,
方法一: 2GM , 2BDG GS x
重叠部分的面积为: 6 2y x
当 0 2 2x ≤ 时, y 与 x 的函数关系式为 6 2y x ···································· 10 分
方法二:当 0 2 2x ≤ 时,
2 2FG x , 4 2DC x , 2GM
重叠部分的面积为:
(2 2 ) (4 2 ) 2 6 22
x xy x
当 0 2 2x ≤ 时, y 与 x 的函数关系式为 6 2y x ···································· 10 分
②当 2 2 4 2x≤ ≤ 时,
设 FC 与 DG 交于点 P ,则 45PDC PCD
90CPD , PC PD
作 PQ DC 于Q ,则 1 (4 2 )2PQ DQ QC x
重叠部分的面积为:
A
FG
(D)B C(E)
图 6M
FG
A
FG
B D C E
图 7
M
FG
A
FG
B C E
图 8
QD
P
2 21 1 1 1(4 2 ) (4 2 ) (4 2 ) 2 2 82 2 4 4y x x x x x ···························12 分
八、(本题 14 分)
26.解:(1)直线 3 3y x 与 x 轴交于点 A ,与 y 轴交于点C .
( 1 0)A , , (0 3)C , ···················································································1 分
点 A C, 都在抛物线上,
2 30 3
3
a c
c
3
3
3
a
c
抛物线的解析式为 23 2 3 33 3y x x ······················································ 3 分
顶点 4 31 3F
, ························································································4 分
(2)存在······································································································ 5 分
1(0 3)P , ···································································································· 7 分
2 (2 3)P , ····································································································9 分
(3)存在·····································································································10 分
理由:
解法一:
延长 BC 到点 B,使 B C BC ,连接 B F 交直线 AC 于点 M ,则点 M 就是所求的点.
················································································11 分
过点 B作 B H AB 于点 H .
B 点在抛物线 23 2 3 33 3y x x 上, (3 0)B ,
在 Rt BOC△ 中, 3tan 3OBC ,
30OBC , 2 3BC ,
在 Rt BB H△ 中, 1 2 32B H BB ,
3 6BH B H , 3OH , ( 3 2 3)B , ···············································12 分
设直线 B F 的解析式为 y kx b
A O x
y
B
F
C
图 9
H
B M
2 3 3
4 3
3
k b
k b
解得
3
6
3 3
2
k
b
3 3 3
6 2y x ·························································································13 分
3 3
3 3 3
6 2
y x
y x
解得
3
7
10 3
7
x
y
,
3 10 3
7 7M
,
在直线 AC 上存在点 M ,使得 MBF△ 的周长最小,此时 3 10 3
7 7M
, .········14 分
解法二:
过点 F 作 AC 的垂线交 y 轴于点 H ,则点 H 为点 F 关于直线 AC 的对称点.连接 BH 交
AC 于点 M ,则点 M 即为所求.································· 11 分
过点 F 作 FG y 轴于点G ,则OB FG∥ , BC FH∥ .
90BOC FGH , BCO FHG
HFG CBO
同方法一可求得 (3 0)B , .
在 Rt BOC△ 中, 3tan 3OBC , 30OBC ,可求得 3
3GH GC ,
GF 为线段CH 的垂直平分线,可证得 CFH△ 为等边三角形,
AC 垂直平分 FH .
即点 H 为点 F 关于 AC 的对称点. 5 30 3H
, ············································ 12 分
设直线 BH 的解析式为 y kx b ,由题意得
0 3
5 33
k b
b
解得
5 39
5 33
k
b
5 53 39 3y ·························································································13 分
A O x
y
B
F
C
图 10
H
MG
5 53 39 3
3 3
y x
y x
解得
3
7
10 3
7
x
y
3 10 3
7 7M
,
在直线 AC 上存在点 M ,使得 MBF△ 的周长最小,此时 3 10 3
7 7M
, . 1