• 1.04 MB
  • 2021-05-13 发布

中考数学探索规律题练习

  • 12页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
中考数学真题系列 ‎——猜想、规律与探索 一 、选择题 ‎1.如图,下面是按照一定规律画出的“数形图”,经观察可以发现:图A2比图A1多出2个“树枝”, 图A3比图A2多出4个“树枝”, 图A4比图A3多出8个“树枝”,……,照此规律,图A6比图A2多出“树枝”( )‎ ‎ A.28 B‎.56 C.60 D. 124‎ ‎ ‎ ‎2.如图5所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第(是大于0的整数)个图形需要黑色棋子的个数是 .‎ ‎ ‎ ‎3.下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的。当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是…………………………………………( )‎ A)495 B)‎497 C)501 D)503‎ ‎ ‎ ‎4.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B‎1C1C;延长C1B1交x轴于点A2,作正方形A2B‎2C2C1…按这样的规律进行下去,第2010个正方形的面积为 ‎ O A B C D A1‎ B1‎ C1‎ A2‎ C2‎ B2‎ x y A. B. C. D.‎ ‎ 5.古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如: ‎ 他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是 ‎(A)15 (B)25 (C)55 (D)1225‎ ‎ ‎ ‎6.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图6-1.在图6-2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图6-1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是 图6-1‎ 图6-2‎ 向右翻滚90°‎ 逆时针旋转90°‎ A.6 B.‎5 ‎ C.3 D.2‎ ‎7.如图,所有正方形的中心均在坐标原点,且各边与轴或轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用…表示为,则顶点的坐标为( )‎ A B C P0‎ P3‎ P2‎ P1‎ 第8题 A、(13,13) B、(-13,-13) C、(14,14) D、(-14,-14)‎ ‎8.电子跳蚤游戏盘是如图所示的△ABC,AB=6,AC=7,BC=8.如果跳蚤开始时在BC边的P0处,BP0=2.跳蚤第一步从P0跳到AC边的P1(第一次落点)处,且CP1=CP0;第二步从P1跳到AB边的P2(第一次落点)‎ 处,且AP2=AP1;第三步从P2跳到BC边的P3(第三次落点)处,且BP3=BP2;……;跳蚤按上述规则一致跳下去,第n次落点为Pn(n为正整数),则点P2007与P2010之间的距离为( )‎ A.1 B.‎2 C.3 D.4‎ ‎9.如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为 输出 输入x x+3‎ x为偶数 x为奇数 ‎(第11题)‎ ‎(A)6       (B)3   (C)      (D)‎ ‎10.如图,小红作出了边长为1的第1个正△A1B‎1C1,算出了正△A1B‎1C1的面积,然后分别取△A1B‎1C1三边的中点A2,B2,C2,作出了第2个正△A2B‎2C2,算出了正△A2B‎2C2的面积,用同样的方法,作出了第3个正△A3B‎3C3,算出了正△A3B‎3C3的面积……,由此可得,第8个正△A8B‎8C8的面积是( )‎ A. B. C. D.‎ ‎11.对于每个非零自然数n,抛物线与x轴交于An、Bn两点,以表示这两点间的距离,则的值是 A. B. C. D. ‎ ‎ ‎ ‎ ‎ 二、填空题 ‎1.如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形.‎ ‎……‎ ‎ ‎ ‎2.直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有 ▲ 个点.‎ ‎3.已知a≠0,,,,…,,则      (用含a的代数式表示).‎ ‎ 4.如图,直线y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A5的坐标为(_______,_______).‎ ‎ ‎第17题 AD BAD CFEBAD A1‎ A2‎ A3‎ B1‎ B2‎ B3‎ ‎5.如图,△ABC的面积为1,分别取AC、BC两边的中点A1、B1,则四边形A1ABB1的面积为,再分别取A‎1C、B‎1C的中点A2、B2,A‎2C、B‎2C的中点A3、B3,依次取下去….利用这一图形,能直观地计算出+++…+=________. ‎ ‎6.已知:,,,…,‎ 观察上面的计算过程,寻找规律并计算 .‎ ‎7.符号“f”表示一种运算,它对一些数的运算结果如下:‎ ‎(1)f(1)=0,f(2) = 1,f(3)=2,f(4)= 3,……‎ ‎(2)……‎ 利用以上规律计算: ‎ ‎8.已知是正整数,是反比例函数图象上的一列点,其中.记,,若(是非零常数),则A1·A2·…·An的值是________________________(用含和的代数式表示).‎ ‎9.如图(1),已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B‎1C1D1;把正方形A1B‎1C1D1边长按原法延长一倍得到正方形A2B‎2C2D2(如图(2));以此下去···,则正方形A4B‎4C4D4的面积为__________‎ 第9题图(1)‎ A1‎ B1‎ C1‎ D1‎ A B C D D2‎ A2‎ B2‎ C2‎ D1‎ C1‎ B1‎ A1‎ A B C D 图(2)‎ ‎10.在反比例函数的图象上,有一系列点、、…、、,若的横坐标为2,且以后每点的横坐标与它前一个点的横坐标的差都为2. 现分别过点、、…、、作轴与轴的垂线段,构成若干个矩形如图8所示,将图中阴影部分的面积从左到右依次记为、、、,则________________,+++…+_________________.(用n的代数式表示)‎ ‎ ‎ ‎ 11.右图为手的示意图,在各个手指间标记字母A,B,C,D.请你按图中箭头所指方向(即A→B→C→D→C→B→A→B→C→…的方式)从A开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是 ;当字母C第201次出现时,恰好数到的数是 ;当字母C第2n+1次出现时(n为正整数),恰好数到的数是 (用含n的代数式表示).‎ ‎12.如图,n+1个上底、两腰长皆为1,下底长为2的等腰梯形的下底均在同一直线上,设四边形P‎1M1N1N2面积为S1,四边形P‎2M2‎N2N3的面积为S2,……,四边形PnMnNnNn+1的面积记为Sn,通过逐一计算S1,S2,…,可得Sn= .‎ ‎(第12题)‎ A N1‎ N2‎ N3‎ N4‎ N5‎ P4‎ P1‎ P2‎ P3‎ M1‎ M2‎ M3‎ M4‎ ‎…‎ ‎ ‎ ‎13.两个反比例子函数y=,y=在第一象限内的图象如图所示,点P1,P2,P3,……,P2010在反比例函数y=图象上,它们的横坐标分别是x1,x2,x3,……,x2010,纵坐标分别是1,3,5,……,共2010‎ 个连续奇数,过点P1,P2,P3,……,P2010分别作y轴的平行线,与y=的图象交点依次是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),……,Q2010(x2010,y2010),则y2010=_______________。‎ 第14题 D1‎ D5‎ D2‎ D3‎ D4‎ D0‎ ‎14.如图,△ABC是一个边长为2的等边三角形,AD0⊥BC,垂足为点D0.过点D0作D0D1⊥AB,垂足为点D1;再过点D1作D1D2⊥AD0,垂足为点D2;又过点D2作D2D3⊥AB,垂足为点D3;……;这样一直作下去,得到一组线段:D0D1,D1D2,D2D3,……,则线段Dn-1Dn的长为_ ▲ _(n为正整数). ‎ ‎15.小敏将一张直角边为l的等腰直角三角形纸片(如图1),沿它的对称轴折叠1次后得 到一个等腰直角三角形(如图2),再将图2的等腰直角三角形沿它的对称轴折叠后得 到一个等腰直角三角形(如图3),则图3中的等腰直角三角形的一条腰长为 ;同上操作,若小敏连续将图1的等腰直角三角形折叠n次后所得到 的等腰直角三角形(如图n+1)的一条腰长为 .‎ ‎ ‎ ‎16.如图,在平面直角坐标系中,边长为1的正方形OA1B‎1C的对角线 A‎1C和OB1交于点M1;以M‎1A1为对角线作第二个正方形A‎2A1B‎2M1,对角线A‎1M1和A2B2交于点M2;以M‎2A1为对角线作第三个正方形A‎3A1B‎3M2‎,对角线A‎1M2‎和A3B3交于点M3;……依此类推,这样作的第n 个正方形对角线交点Mn的坐标为 .‎ P1‎ P3‎ P2‎ O 图7‎ Y X ‎17.如图7,将边长为2的等边三角形沿x轴正方向连续翻折2010次,依次得到点P,P,P…P ‎.则点P的坐标是 .‎ ‎18.把一张纸片剪成4块,再从所得的纸片中任取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止。那么2007,2008,2009,2010这四个数中______________可能是剪出的纸片数 ‎19.如图所示,直线y=x+1与y轴相交于点A1,以OA1为边作正方形OA1B‎1C1,记作第一个正方形;然后延长C1B1与直线y=x+1相交于点A2,再以C‎1A2为边作正方形C‎1A2B‎2C2,记作第二个正方形;同样延长C2B2与直线y=x+1相交于点A3,再以C‎2A3为边作正方形C‎2A3B‎3C3,记作第三个正方形;…依此类推,则第n个正方形的边长为________________.‎ ‎ ‎图1‎ ‎20.如图1,已知Rt△ABC中,AC=3,BC= 4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A‎1C1⊥BC,垂足为C1,过C1作C‎1A2⊥AB,垂足为A2,再过A2作A‎2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1,A‎1C1,,…,则CA1= , ‎ ‎21.如图,在△ABC中,∠A=.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2; ……;∠A2008BC与∠A2008CD的平分线相交于点A2009,得∠A2009 .则∠A2009= .‎ B A C D ‎21题图 A1‎ A2‎ ‎…‎ ‎① ② ③ ④ ‎ ‎ 22、如图,图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的)后,得图③,④,…,记第n(n≥3) 块纸板的周长为Pn,则Pn-Pn-1= ▲ .‎ ‎23、 如图,已知,是斜边的中点,过作于,连结交于;过作于,连结交于;过作于,…,如此继续,可以依次得到点,…,,分别记…,的面积为,….则=________(用含的代数式表示).‎ B C A E1‎ E2‎ E3‎ D4‎ D1‎ D2‎ D3‎ ‎(1)‎ ‎(2)‎ ‎(3)‎ ‎24.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖 __________块,第个图形中需要黑色瓷砖__________块(用含的代数式表示).‎ ‎25.如图所示,已知:点,,在内依次作等边三角形,使一边在轴上,另一个顶点在边上,作出的等边三角形分别是第1个,第2个,第3个,…,则第个等边三角形的边长等于 . ‎ O y x ‎(A)‎ A1‎ C ‎1‎ ‎1‎ ‎2‎ B A2‎ A3‎ B3‎ B2‎ B1‎ ‎25题图 ‎ ‎ 三 解答题 ‎1. (数学课堂上,徐老师出示了一道试题:‎ 如图(十)所示,在正三角形ABC中,M是BC边(不含端点B,C)上任意一点,P是BC延长线上一点,N是∠ACP的平分线上一点,若∠AMN=60°,求证:AM=MN。‎ ‎(1)经过思考,小明展示了一种正确的证明过程,请你将证明过程补充完整。‎ 证明:在AB上截取EA=MC,连结EM,得△AEM。‎ ‎∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB -∠B,∠AMN=∠B=60°,∴∠1=∠2.‎ 又∵CN、平分∠ACP,∴∠4=∠ACP=60°。∴∠MCN=∠3+∠4=120°。………………①‎ 又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM。∴△BEM为等边三角形,∴∠6=60°。‎ ‎∴∠5=10°-∠6=120°。………………②由①②得∠MCN=∠5.在△AEM和△MCN中,‎ ‎∵__________,____________,___________,∴△AEM≌△MCN(ASA)。∴AM=MN.‎ ‎(2)若将试题中的“正三角形ABC”改为“正方形A1B‎1C1D‎1”‎(如图),N1是∠D‎1C1P1的平分线上一点,则当∠A‎1M1N1=90°时,结论A‎1M1=M1N1是否还成立?(直接给出答案,不需要证明)‎ ‎(3)若将题中的“正三角形ABC”改为“正多边形AnBnCnDn…Xn”,请你猜想:当∠AnMnNn=______°时,结论AnMn=MnNn仍然成立?(直接写出答案,不需要证 ‎ ‎ 2.如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个的顶点与点P重合,第二个的顶点是与PQ的交点,…,最后一个的顶点、在圆上.‎ ‎(第23题)‎ ‎(第23题 图1)‎ ‎(第23题 图2)‎ ‎(1)如图1,当时,求正三角形的边长;‎ ‎(2)如图2,当时,求正三角形的边长; 全品中考网 ‎(3)如题图,求正三角形的边长(用含n的代数式表示).‎ ‎3.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式. 请你观察下列几种简单多面体模型,解答下列问题:‎ 四面体 长方体 正八面体 正十二面体 ‎ 多面体 顶点数(V)‎ 面数(F)‎ 棱数(E)‎ 四面体 ‎4‎ ‎4‎ ‎▲‎ 长方体 ‎8‎ ‎6‎ ‎12‎ 正八面体 ‎▲‎ ‎8‎ ‎12‎ 正十二面体 ‎20‎ ‎12‎ ‎30‎ (1) 根据上面多面体模型,完成表格中的空格:‎ 你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是 ▲ ;‎ ‎(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是 ▲ ;‎ ‎ (3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱. 设该多面体外表面三角形的个数为x个,八边形的个数为y个,求x+y的值.‎ ‎ ‎ ‎4.已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y = 的图像上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限.‎ y P Q M N O x ‎1‎ ‎2‎ ‎-1‎ ‎-2‎ ‎-3‎ ‎-3‎ ‎-2‎ ‎-1‎ ‎1‎ ‎2‎ ‎3‎ ‎(第23题图)‎ ‎(1)如图所示,若反比例函数解析式为y= ,P点坐标为(1, 0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ‎1M1N1,并写出点M1的坐标; M1的坐标是 ▲ ‎ ‎(2) 请你通过改变P点坐标,对直线M‎1 M的解析式y﹦kx+b进行探究可得 k﹦ ▲ , 若点P的坐标为(m,0)时,则b﹦ ▲ ;‎ ‎ (3) 依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标.‎ ‎ ‎ ‎5.小贝遇到一个有趣的问题:在矩形ABCD中,AD=‎8cm,AB=‎6cm.现有一动点P按下列方式在矩形内运动:它从A点出发,沿着与AB边夹角为45°的方向作直线运动,每次碰到矩形的一边,就会改变运动方向,沿着与这条边夹角为45°的方向作直线运动,并且它一直按照这种方式不停地运动,即当点P碰到BC边,沿着与BC边夹角为45°的方向作直线运动,当点P碰到CD边,再沿着与CD边夹角为45°的方向作直线运动,…,如图1所示.问P点第一次与D点重合前与边相碰几次,P点第一次与D点重合时所经过的路径的总长是多少.‎ 小贝的思考是这样开始的:如图2,将矩形ABCD沿直线CD折叠,得到矩形A1B1CD.由轴对称的知识,发现P2P3=P2E,P‎1A=P1E.‎ 图1 图2‎ 请你参考小贝的思路解决下列问题:‎ ‎(1)P点第一次与D点重合前与边相碰______次;P点从A点出发到第一次与D点重合时所经过的路径的总长是________cm;‎ ‎(2)进一步探究:改变矩形ABCD中AD、AB的长,且满足AD>AB.动点P从A点出发,按照阅读材料中动点的运动方式,并满足前后连续两次与边相碰的位置在矩形ABCD相邻的两边上.若P点第一次与B点重合前与边相碰7次,则AB∶AD的值为________.‎ ‎(图12)‎ ‎6.如图12,在直角坐标系中,已知点的坐标为(1,0),将线段绕原点O沿逆时针方向旋转45,再将其延长到,使得,得到线段;又将线段绕原点O沿逆时针方向旋转45,再将其延长到,使得,得到线段,如此下去,得到线段,,…,.‎ ‎(1)写出点M5的坐标;(4分)‎ ‎(2)求的周长;(4分)‎ ‎(3)我们规定:把点(0,1,2,3…)‎ 的横坐标,纵坐标都取绝对值后得到的新坐标称之为点的“绝对坐标”.根据图中点 的分布规律,请你猜想点的“绝对坐标”,并写出来. ‎ ‎7.如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将△ADE绕A点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM=BD,EN=CE,得到图③,请解答下列问题:(1)若AB=AC,请探究下列数量关系:‎ ‎①在图②中,BD与CE的数量关系是________________;‎ ‎②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;‎ ‎(2)若AB=k·AC(k>1),按上述操作方法,得到图④,请继续探究:AM与AN的数量关系、∠MAN与∠BAC的数量关系,直接写出你的猜想,不必证明.‎ ‎8.如图,AD是⊙O的直径.‎ ‎(1) 如图①,垂直于AD的两条弦B‎1C1,B‎2C2把圆周4等分,则∠B1的度数是      ,∠B2的度数是      ;‎ ‎(2) 如图②,垂直于AD的三条弦B‎1C1,B‎2C2,B‎3C3把圆周6等分,分别求∠B1,∠B2,∠B3的度数;‎ ‎(3) 如图③,垂直于AD的n条弦B‎1C1,B‎2C2,B‎3 C3,…,BnCn把圆周2n等分,请你用含n的代数式表示∠Bn的度数(只需直接写出答案).‎ A O D B1‎ B2‎ C1‎ C2‎ 图①‎ O D A B1‎ C1‎ B2‎ C2‎ C3‎ B3‎ 图②‎ D Bn A O B1‎ Bn-2‎ C1‎ B2‎ C2‎ B3‎ C3‎ Cn-2‎ Bn-1‎ Cn-1‎ Cn ‎……‎ 图③‎ ‎9.学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加dcm,如图所示.已知每个菱形图案的边长cm,其一个内角为60°.‎ ‎60°‎ ‎……‎ d L ‎(1)若d=26,则该纹饰要231个菱形图案,求纹饰的长度L;‎ ‎(2)当d=20时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案?‎