- 878.69 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
(2010年浙江杭州)提出问题:如图,有一块分布均匀的等腰三角形蛋糕(,且),在蛋糕的边缘均匀分布着巧克力,小明和小华决定只切一刀将这块蛋糕平分(要求分得的蛋糕和巧克力质量都一样).[来源:Z。xx。k.Com]
背景介绍:这条分割直线即平分了三角形的面积,又平分了三角形的周长,我们称这条线为三角 形的“等分积周线”.
尝试解决:
A
B C
A
B C
图 1 图 2
(1)小明很快就想到了一条分割直线,而且用尺规作图作出.请你帮小明在图1中画出这条“等分积周线”,从而平分蛋糕.
(2) 小华觉得小明的方法很好,所以自己模仿着在图1中过点C画了一条直线CD交AB
于点D.你觉得小华会成功吗?如能成功,说出确定的方法;如不能成功,请说明理由.
(3)通过上面的实践,你一定有了更深刻的认识.请你解决下面的问题:若AB=BC=5 cm,
AC=6 cm,请你找出△ABC的所有“等分积周线”,并简要的说明确定的方法.
解:(1) 作线段AC的中垂线BD即可.
(2) 小华不会成功.
若直线CD平分△ABC的面积
那么
∴
∴
∵
∴
∴ 小华不会成功.
(3)① 若直线经过顶点,则AC边上的中垂线即为所求线段.
② 若直线不过顶点,可分以下三种情况:
(a)直线与BC、AC分别交于E、F,如图所示
过点E作EH⊥AC于点H,过点B作BG⊥AC于点G
易求,BG=4,AG=CG=3
设CF=x,则CE=8-x
由△CEH∽△CBG,可得EH=
根据面积相等,可得
∴ (舍去,即为①)或
∴ CF=5,CE=3,直线EF即为所求直线.
(b)直线与AB、AC分别交于M、N, 如图所示
由 (a)可得,AM=3,AN=5,直线MN即为所求直线.
(仿照上面给分)
(c) 直线与AB、BC分别交于P、Q,如图所示
过点A作AY⊥BC于点Y,过点P作PX⊥BC于点X
由面积法可得, AY=
设BP=x,则BQ=8-x
由相似,可得PX=
根据面积相等,可得
∴ (舍去)或
而当BP时,BQ=,舍去.
∴ 此种情况不存在.
综上所述,符合条件的直线共有三条.
(2010年教育联合体)如图,点P是菱形ABCD的对角线BD上一点,连结CP并延长,交AD于E,交BA的延长线点F.问:
(1) 图中△APD与哪个三角形全等?并说明理由.
(2) 求证:△APE ∽△FPA.
(3) 猜想:线段PC、PE、PF之间存在什么关系?并说明理由.
(1) △APD≌△CPD
理由: ∵四边形ABCD菱形
∴AD=CD, ∠ADP=∠CDP
又∵PD=PD
∴△APD≌△CPD
(2) 证明:∵△APD≌△CPD ∴∠DAP=∠DCP
∵CD∥BF ∴∠DCP=∠F ∴∠DAP= ∠F
又∵∠APE=∠FPA ∴△APE ∽△FPA
(3) 猜想:
理由: ∵△APE ∽△FPA
∴ ∴
∵△APD≌△CPD
∴PA=PC ∴
(2009年湖州)如图,在正三角形中,,,分别是,,上的点,,,,则的面积与的面积之比等于( )
A.1∶3 B.2∶3 C.∶2 D.∶3
【关键词】等边三角形的性质,相似的性质
【答案】A
(2009年山西省)如图,在中,的垂直平分线交的延长线于点,则的长为( )
A. B. C. D.2
【关键词】相似三角形判定和性质;勾股定理;线段和角的概念、性质
【答案】B
(2009武汉)如图1,在中,,于点,点是边上一点,连接交于,交边于点.
B
B
A
A
C
O
E
D
D
E
C
O
F
图1
图2
F
(1)求证:;
(2)当为边中点,时,如图2,求的值;
(3)当为边中点,时,请直接写出的值.
【关键词】相似三角形的判定和性质
【答案】解:(1),.
.
B
A
D
E
C
O
F
G
,
,.
;
(2)解法一:作,交的延长线于.
,是边的中点,.
由(1)有,,
.
,,
又,.
,.
,,,
,.
B
A
D
E
C
O
F
解法二:于,
..
设,则,
.
,
.
由(1)知,设,,.
在中,.
..
(3).
(2009年上海市)已知∠ABC=90°,AB=2,BC=3,AD∥BC,P为线段BD上的动点,点Q在射线AB上,且满足(如图1所示).
(1)当AD=2,且点与点重合时(如图2所示),求线段的长;
(2)在图中,联结.当,且点在线段上时,设点之间的距离为,,其中表示△APQ的面积,表示的面积,求关于的函数解析式,并写出函数定义域;
(3)当,且点在线段的延长线上时(如图3所示),求的大小.
A
D
P
C
B
Q
图1
D
A
P
C
B
(Q)
)
图2
图3
C
A
D
P
B
Q
【关键词】等腰直角三角形 相似三角形 共高三角形的面积 直角三角形相似的判定
【答案】(1)∵Rt△ABD中,AB=2,AD=2,
∴=1,∠D=45°
∴PQ=PC即PB=PC,
过点P作PE⊥BC,则BE=。
而∠PBC=∠D=45°
∴PC=PB=
(2)在图8中,过点P作PE⊥BC,PF⊥AB于点F。
∵∠A=∠PEB=90°,∠D=∠PBE
∴Rt△ABD∽Rt△EPB
∴
设EB=3k,则EP=4k,PF=EB=3k
∴,
=
∴
函数定义域为
F
E
F
E
A
D
P
C
B
Q
图1
D
A
P
C
B
(Q)
)
图2
图3
C
A
D
P
B
Q
(3)答:90°
证明:在图8中,过点P作PE⊥BC,PF⊥AB于点F。
∵∠A=∠PEB=90°,∠D=∠PBE
∴Rt△ABD∽Rt△EPB
∴
∴=
∴Rt△PQF∽Rt△PCE
∴∠FPQ=∠EPC
∴∠EPC+∠QPE=∠FPQ+∠QPE=90°
(2009年宁波市)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为,直线BC经过点,,将四边形OABC绕点O按顺时针方向旋转度得到四边形,此时直线、直线分别与直线BC相交于点P、Q.
(1)四边形OABC的形状是 ,
当时,的值是 ;
(2)①如图2,当四边形的顶点落在轴正半轴时,求的值;
②如图3,当四边形的顶点落在直线上时,求的面积.
(Q)
C
B
A
O
x
P
(图3)
y
Q
C
B
A
O
x
P
(图2)
y
C
B
A
O
y
x
(备用图)
(第26题)
(3)在四边形OABC旋转过程中,当时,是否存在这样的点P和点Q,使?若存在,请直接写出点P的坐标;若不存在,请说明理由.
【关键词】相似三角形有关的计算和证明
【答案】解:(1)矩形(长方形);
.
(2)①,,
.
,即,
,.
同理,
,即,
,.
.
②在和中,
.
.
设,
在中, ,解得.
.
(3)存在这样的点和点,使.
点的坐标是,.
对于第(3)题,我们提供如下详细解答,对学生无此要求.
过点画于,连结,则,
,,
.
Q
C
B
A
O
x
P
y
H
设,
,
,
① 如图1,当点P在点B左侧时,
,
在中,,
解得,(不符实际,舍去).Q
C
B
A
O
x
P
y
H
,
.
②如图2,当点P在点B右侧时,
,.
在中,,解得.
,
.
综上可知,存在点,,使.
(2009年义乌)如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原。
(1)当时,折痕EF的长为;当点E与点A重合时,折痕EF的长为;
(2)请写出使四边形EPFD为菱形的的取值范围,并求出当时菱形的边长;
(3)令,当点E在AD、点F在BC上时,写出与的函数关系式。当取最大值时,判断与是否相似?若相似,求出的值;若不相似,请说明理由。
【关键词】相似三角形
【答案】
解:(1)3,
(2).
D
C
B
A
P
E
F
图1
当时,如图1,连接,
为折痕,,
令为,则,
在中,,
,
D
C
F
B
A
P
E
O
图2
H
解得,此时菱形边长为.
(3)如图2,过作,
易证,
,
D
C
(F)
H
B
A
P
E
O
图3
当与点重合时,如图3,连接,
,,
.
显然,函数的值在轴的右侧随的增大而增大,
当时,有最大值.
此时,.
综上所述,当取最大值时,,(不写不扣分).
(2009恩施市)如图,在中,的面积为25,点为边上的任意一点(不与、重合),过点作,交于点.设,以为折线将翻折(使落在四边形所在的平面内),所得的与梯形重叠部分的面积记为.
E
D
B
C
A
B
C
A
(1)用表示的面积;
(2)求出时与的函数关系式;
(3)求出时与的函数关系式;
(4)当取何值时,的值最大?最大值是多少?
【关键词】相似、二次函数
【答案】解:(1) ∵ DE∥BC ∴∠ADE=∠B,∠AED=∠C
∴△ADE∽△ABC ∴
即
(2)∵BC=10 ∴BC边所对的三角形的中位线长为5
∴当0﹤ 时
(3)﹤10时,点A'落在三角形的外部,其重叠部分为梯形
∵S△A'DE=S△ADE=
∴DE边上的高AH=AH'=
由已知求得AF=5
∴A'F=AA'-AF=x-5
由△A'MN∽△A'DE知
∴
(4)在函数中
∵0﹤x≤5
∴当x=5时y最大为:
在函数中
当时y最大为:
∵﹤
∴当时,y最大为:
(2009泰安)将一个量角器和一个含30度角的直角三角板如图(1)放置,图(2)是由他抽象出的几何图形,其中点B在半圆O的直径DE的延长线上,AB切半圆O于点F,且BC=OD。
(1) 求证:DB∥CF。
(2) 当OD=2时,若以O、B、F为顶点的三角形与△ABC相似,求OB。
【关键词】相似、切线
【答案】证明:
(1)连接OF,如图
∵AB且半圆O于F,
∴OF⊥AB。
∵CB⊥AB ,∴BC∥OF。
∵BC=OD,OD=OF,
∴BC=OF。
∴四边形OBCF是平行四边形,
∴DB∥CF。
(2)
∵以O、B、F为顶点的三角形与△ABC相似,∠OFB=∠ABC=90°,
∴∠A∠OBF∠BOF
∵∠OBF=∠BFC,∠BFC>∠A,
∴∠OBF>∠A
∴∠OBF与∠A不可能是对顶角。
∴∠A与∠BOF是对应角。
∴∠BOF=30° ∴OB=OF/cos30°=
(2009江西)问题背景 在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:
甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.
乙组:如图2,测得学校旗杆的影长为900cm.
丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.
任务要求
(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;
(2)如图3,设太阳光线与相切于点.请根据甲、丙两组得到的信息,求景灯灯罩的半径(友情提示:如图3,景灯的影长等于线段的影长;需要时可采用等式).
D
D
F
E
900cm
图2
B
C
A
60cm
80cm
图1
G
H
NE
156cm
ME
OE
200cm
图3
KE
【关键词】相似、光影
【答案】解:(1)由题意可知:
∴
∴即
∴DE=1200(cm).
所以,学校旗杆的高度是12m.
(2)解法一:
与①类似得:即
∴GN=208.
在中,根据勾股定理得:
∴NH=260.
设的半径为rcm,连结OM,
∵NH切于M,∴
则又
∴∴
又.
∴解得:r=12.
所以,景灯灯罩的半径是12cm.
D
D
F
E
900cm
图2
B
C
A
60cm
80cm
图1
图3
G
H
NE
156cm
ME
OE
200cm
KE
解法二:
与①类似得:即
∴GN=208.
设的半径为rcm,连结OM,
∵NH切于M,∴
则又
∴
∴即
∴又.
在中,根据勾股定理得:
即
解得:(不合题意,舍去)
所以,景灯灯罩的半径是12cm.
(2009年清远)如图,已知一个三角形纸片,边的长为8,边上的高为,和都为锐角,为一动点(点与点不重合),过点作,交于点,在中,设
的长为,上的高为.
(1)请你用含的代数式表示.
(2)将沿折叠,使落在四边形所在平面,设点落在平面的点为,与四边形重叠部分的面积为,当为何值时,最大,最大值为多少?
【关键词】分类讨论思想
【答案】解:(1)
(2)
的边上的高为,
当点落在四边形内或边上时,
=(0)
当落在四边形外时,如下图,
设的边上的高为,
则
所以
综上所述:当时,,取,
M
N
C
B
E
F
A
A1
当时,,
取,
当时,最大,
(2009年济宁市)如图,中,,,.半径为1的圆的圆心以1个单位/的速度由点沿方向在上移动,设移动时间为(单位:).
(1)当为何值时,⊙与相切;
(2)作交于点,如果⊙和线段交于点,证明:当时,四边形为平行四边形.
【关键词】相似
【答案】(1)解:当⊙在移动中与相切时,设切点为,连,
则.
∴∽.∴.
∵,,
∴.∴.
(2)证明:∵,,∴∥.
当时,.
∴.∴.
∴.
∵∽,∴.∴,
∴.∴.
∴当时,四边形为平行四边形.
(2009年广西钦州)如图,已知抛物线y=x2+bx+c与坐标轴交于A、B、C三点, A点的坐标为(-1,0),过点C的直线y=x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.
(1)填空:点C的坐标是_▲_,b=_▲_,c=_▲_;
(2)求线段QH的长(用含t的式子表示);
(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.
【关键词】二次函数、相似三角形.
【答案】
解:(1)(0,-3),b=-,c=-3.
(2)由(1),得y=x2-x-3,它与x轴交于A,B两点,得B(4,0).
∴OB=4,又∵OC=3,∴BC=5.
由题意,得△BHP∽△BOC,
∵OC∶OB∶BC=3∶4∶5,
∴HP∶HB∶BP=3∶4∶5,
∵PB=5t,∴HB=4t,HP=3t.
∴OH=OB-HB=4-4t.
由y=x-3与x轴交于点Q,得Q(4t,0).
∴OQ=4t.
①当H在Q、B之间时,
QH=OH-OQ
=(4-4t)-4t=4-8t.
②当H在O、Q之间时,
QH=OQ-OH
=4t-(4-4t)=8t-4.
综合①,②得QH=|4-8t|;
(3)存在t的值,使以P、H、Q为顶点的三角形与△COQ相似.
①当H在Q、B之间时,QH=4-8t,
若△QHP∽△COQ,则QH∶CO=HP∶OQ,得=,
∴t=.
若△PHQ∽△COQ,则PH∶CO=HQ∶OQ,得=,
即t2+2t-1=0.
∴t1=-1,t2=--1(舍去).
②当H在O、Q之间时,QH=8t-4.
若△QHP∽△COQ,则QH∶CO=HP∶OQ,得=,
∴t=.
若△PHQ∽△COQ,则PH∶CO=HQ∶OQ,得=,
即t2-2t+1=0.
∴t1=t2=1(舍去).
综上所述,存在的值,t1=-1,t2=,t3=.
(2009临沂)如图,抛物线经过三点.
(1)求出抛物线的解析式;
(2)P是抛物线上一动点,过P作轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
(3)在直线AC上方的抛物线上有一点D,使得的面积最大,求出点D的坐标.
【关键词】抛物线的解析式,相似的性质,二次函数的最值问题
【答案】解:(1)该抛物线过点,可设该抛物线的解析式为.
将,代入,
得解得
此抛物线的解析式为.
(2)存在.
如图,设点的横坐标为,
则点的纵坐标为,
当时,
,.
又,
①当时,
,
即.
解得(舍去),.
②当时,,即.
解得,(均不合题意,舍去)
当时,.
类似地可求出当时,.
当时,.
综上所述,符合条件的点为或或.
(3)如图,设点的横坐标为,则点的纵坐标为.
过作轴的平行线交于.
由题意可求得直线的解析式为.
点的坐标为.
.
.
当时,面积最大.
(2009泰安)如图,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中点,ED的延长线与CB的延长线交于点F。
(1) 求证:FD2=FB●FC。
(2) 若G是BC的中点,连接GD,GD与EF垂直吗?并说明理由。
【关键词】相似、垂直
【答案】证明:(1)∵E是Rt△ACD斜边中点
∴DE=EA
∴∠A=∠2
∵∠1=∠2
∴∠1=∠A…
∵∠FDC=∠CDB+∠1=90°+∠1,∠FBD=∠ACB+∠A=90°+∠A
∴∠FDC=∠FBD
∵F是公共角
∴△FBD∽△FDC
∴
∴
(2)GD⊥EF
理由如下:
∵DG是Rt△CDB斜边上的中线,
∴DG=GC
∴∠3=∠4
由(1)得∠4=∠1
∴∠3=∠1
∵∠3+∠5=90°
∴∠5+∠1=90°
∴DG⊥EF
(2009年中山)正方形边长为4,、分别是、上的两个动点,当点在上运动时,保持和垂直,
(1)证明:;
(2)设,梯形的面积为,求与之间的函数关系式;当点运动到什么位置时,四边形面积最大,并求出最大面积;
(3)当点运动到什么位置时,求的值.
【关键词】相似三角形有关的计算和证明
【答案】(1)在正方形中,,
,
,
.
在中,,
,
.
(2),
,
,
,
当时,取最大值,最大值为10.
(3),
要使,必须有,
由(1)知,
,
当点运动到的中点时,,此时.
(2009年牡丹江)如图,在平面直角坐标系中,若、的长是关于的一元二次方程的两个根,且
(1)求的值.
(2)若为轴上的点,且求经过、两点的直线的解析式,并判断与是否相似?
(3)若点在平面直角坐标系内,则在直线上是否存在点使以、、、为顶点的四边形为菱形?若存在,请直接写出点的坐标;若不存在,请说明理由.
x
y
A
D
B
O
C
【关键词】三角函数,一次函数,菱形,相似三角形的综合应用
【答案】(1)解得
在中,由勾股定理有
(2)∵点在轴上,
由已知可知D(6,4)
设当时有
解得
同理时,
在中,
在中,
(3)满足条件的点有四个
(2009年宁德市)如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.
(1)连接GD,求证:△ADG≌△ABE;
(2)连接FC,观察并猜测∠FCN的度数,并说明理由;
N
M
B
E
C
D
F
G
图(1)
(3)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请用含a、b的代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.
【关键词】四边形中三角形全等和相似的运用
解:(1)∵四边形ABCD和四边形AEFG是正方形
∴AB=AD,AE=AG,∠BAD=∠EAG=90º
∴∠BAE+∠EAD=∠DAG+∠EAD
∴∠BAE=∠DAG
∴△ BAE≌△DAG
M
B
E
A
C
N
D
F
G
图(1)
H
(2)∠FCN=45º
理由是:作FH⊥MN于H
∵∠AEF=∠ABE=90º
∴∠BAE +∠AEB=90º,∠FEH+∠AEB=90º
∴∠FEH=∠BAE
又∵AE=EF,∠EHF=∠EBA=90º
∴△EFH≌△ABE
∴FH=BE,EH=AB=BC,∴CH=BE=FH
∵∠FHC=90º,∴∠FCH=45º
(3)当点E由B向C运动时,∠FCN的大小总保持不变,
理由是:作FH⊥MN于H
由已知可得∠EAG=∠BAD=∠AEF=90º
结合(1)(2)得∠FEH=∠BAE=∠DAG
又∵G在射线CD上
∠GDA=∠EHF=∠EBA=90º
∴△EFH≌△GAD,△EFH∽△ABE
∴EH=AD=BC=b,∴CH=BE,
∴==
∴在Rt△FEH中,tan∠FCN===
∴当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=
(09湖南怀化)如图11,已知二次函数的图象与轴相交于两个不同的点、,与轴的交点为.设的外接圆的圆心为点.
(1)求与轴的另一个交点D的坐标;
(2)如果恰好为的直径,且的面积等于,求和的值.
【关键词】圆的基本性质、三角形相似的判定和性质
【答案】解 (1)易求得点的坐标为
由题设可知是方程即 的两根,
所以,
所
如图3,∵⊙P与轴的另一个交点为D,由于AB、CD是⊙P的两条相交弦,设它们的交点为点O,连结DB,∴△AOC∽△DOC,则
由题意知点在轴的负半轴上,从而点D在轴的正半轴上,
所以点D的坐标为(0,1)
(2)因为AB⊥CD, AB又恰好为⊙P的直径,则C、D关于点O对称,
所以点的坐标为,即
又,
所以解得
(09湖北宜昌)(09湖北宜昌)已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C重合), MN为折痕,点M,N分别在边BC, AD上,连接AP,MP,AM, AP与MN相交于点F.⊙O过点M,C,P.
(1)请你在图1中作出⊙O(不写作法,保留作图痕迹);
(2)与 是否相等?请你说明理由;
(3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H.
设AB为4,请你通过计算,画出这时的图形.(图2,3供参考)
图1 图2 图3
【关键词】矩形的性质与判定、线段的比和比例线段
【答案】解:(1)如图;
(2)与不相等.
假设,则由相似三角形的性质,得MN∥DC.
∵∠D=90°,∴DC⊥AD,∴MN⊥AD.
∵据题意得,A与P关于MN对称,∴MN⊥AP.
∵据题意,P与D不重合,
∴这与“过一点(A)只能作一条直线与已知直线(MN)垂直”矛盾.
∴假设不成立.
∴不成立.
(2) 解法2:与不相等.
理由如下:
∵P, A关于MN对称,∴MN垂直平分AP.
∴cos∠FAN=.
∵∠D=90°, ∴cos∠PAD=.
∵∠FAN=∠PAD,∴=.
∵P不与D重合,P在边DC上;∴AD≠AP.
∴≠;从而≠.
(3)∵AM是⊙O的切线,∴∠AMP=90°,
∴∠CMP+∠AMB=90°.
∵∠BAM+∠AMB=90°,∴∠CMP=∠BAM.
∵MN垂直平分,∴MA=MP,
∵∠B=∠C=90°, ∴△ABM≌△MCD.
∴MC=AB=4, 设PD=x,则CP=4-x,
∴BM=PC=4-x. (5分)
连结HO并延长交BC于J.
∵AD是⊙O的切线,∴∠JHD=90°.
∴矩形HDCJ. (7分)
∴OJ∥CP, ∴△MOJ∽△MPC,
∴OJ:CP=MO:MP=1:2,
∴OJ=(4-x),OH=MP=4-OJ=(4+x).
∵MC2= MP2-CP2,∴(4+x)2-(4-x)2=16.
解得:x=1.即PD=1,PC=3,
∴BC=BM+MC=PC+AB=3+4=7.
由此画图(图形大致能示意即可).
(3)解法2:
连接HO,并延长HO交BC于J点,连接AO.
由切线性质知,JH⊥AD,∵BC∥AD,∴HJ⊥BC,
∴OJ⊥MC,∴MJ=JC.
∵AM,AH与⊙O相切于点M,H,
∴∠AMO=∠AHO=90°,
∵OM=OH, AO=AO,
∴Rt△AMO≌Rt△AHO.
∴设AM=x,则 AM=AH=x,
由切线性质得,AM⊥PM,
∴∠AMP=90°,∴∠BMA+∠CMP=90°.
∵∠BMA+∠BAM=90°,∴∠BAM=∠CMP ,
∵∠B=∠MCP=90°,
∵MN为AP的中垂线,∴AM=MP.
∴△ABM≌△MCP .
∴四边形ABJH为矩形,得BJ=AH=x,
Rt△ABM中,BM=,
∴MJ==JC,(9分)
∴AB=MC.∴4=2(),∴
∴AD=BC==7,
∴PC==3.
由此画图(图形大致能示意即可).
(2009年茂名市)如图,在中,点是边上的动点(点与点不重合),过动点作交于点
(1)若与相似,则是多少度? (2分)
(2)试问:当等于多少时,的面积最大?最大面积是多少? (4分)
(3)若以线段为直径的圆和以线段为直径的圆相外切,求线段的长.(4分)
【关键词】二次函数、圆、相似综合题
【答案】(1)当△ABC 与△DAP 相似时,∠APD的度数是60°或30°.
(2)设,∵,,∴,
又∵,∴,,
∴,而,
∴
.
∴PC 等于12时,的面积最大,最大面积是.
(3)设以和为直径的圆心分别为、,过 作 于点,
设的半径为,则.显然,,∴,∴,
∴,
,
又∵和外切,
∴.
在中,有,
∴,
解得:, ∴.
(2009年山东青岛市)如图,在梯形ABCD中,,,,,点由B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交于Q,连接PE.若设运动时间为(s)().解答下列问题:
(1)当为何值时,?
(2)设的面积为(cm2),求与之间的函数关系式;
(3)是否存在某一时刻,使?若存在,求出此时的值;若不存在,说明理由.
(4)连接,在上述运动过程中,五边形的面积是否发生变化?说明理由.
【关键词】全等三角形的性质与判定、相似三角形判定和性质、平行四边形有关的计算
【答案】解:(1)∵
∴.
而,
∴,
∴.
∴当.
(2)∵平行且等于,
∴四边形是平行四边形.
∴.
∵,
∴.
∴.
∴.
.
∴.
过B作,交于,过作,交于.
.
∵,
∴.
又,
,
,
.
(3).
若,
则有,
解得.
(4)在和中,
∴
.
∴在运动过程中,五边形的面积不变.
(2009年广东省)正方形边长为4,、分别是、上的两个动点, 当点在上运动时,保持和垂直,
(1)证明:;
(2)设,梯形的面积为,求与之间的函数关系式;当点运动到什么位置时,四边形面积最大,并求出最大面积;
(3)当点运动到什么位置时,求此时的值.
【关键词】正方形的性质;相似三角形判定和性质;直角梯形;与二次函数有关的面积问题;二次函数的极值问题;相似三角形有关的计算和证明
【答案】
解:(1)在正方形中,
,
,
,
,
在中,,
,
,
(2),
,
,
,
当时,取最大值,最大值为10.
(3),
要使,必须有,
由(1)知,
,
当点运动到的中点时,,此时.
A
D
B
E
O
C
F
x
y
y
(G)
(2009年山西省)如图,已知直线与直线相交于点分别交轴于两点.矩形的顶点分别在直线上,顶点都在轴上,且点与点重合.
(1)求的面积;
(2)求矩形的边与的长;
(3)若矩形从原点出发,沿轴的反方向以每秒1个单位长度的速度平移,设移动时间为秒,矩形与重叠部分的面积为,求关于的函数关系式,并写出相应的的取值范围.
【关键词】一次函数的几何应用;一次函数与二元一次方程;矩形的性质;特殊平行四边形相关的面积问题;相似三角形有关的计算
【答案】(1)解:由得点坐标为
由得点坐标为
∴
由解得∴点的坐标为
∴
(2)解:∵点在上且
∴点坐标为
又∵点在上且
∴点坐标为
∴
(3)解法一:当时,如图1,矩形与重叠部分为五边形(时,为四边形).过作于,则
A
D
B
E
O
R
F
x
y
y
M
(图3)
G
C
A
D
B
E
O
C
F
x
y
y
G
(图1)
R
M
A
D
B
E
O
C
F
x
y
y
G
(图2)
R
M
∴即∴
∴
即
当时,如图2,为梯形面积,∵G(8-t,0)∴GR=,
∴
当时,如图3,为三角形面积,
Q
P
C
B
A
O
(2009年绵阳市)如图,A、P、B、C是⊙O上的四点,∠APC =∠BPC = 60°,
AB与PC交于Q点.
(1)判断△ABC的形状,并证明你的结论;
(2)求证:;
(3)若∠ABP = 15°,△ABC的面积为4,求PC的长.
【关键词】圆的性质,相似三角形,三角函数
【答案】(1) ∵ ∠ABC =∠APC = 60°,∠BAC =∠BPC = 60°,
∴ ∠ACB = 180°-∠ABC-∠BAC = 60°,
∴ △ABC是等边三角形.
(2)如图,过B作BD∥PA交PC于D,则 ∠BDP =∠APC = 60°.
又 ∵ ∠AQP =∠BQD,∴ △AQP∽△BQD, .
∵ ∠BPD =∠BDP = 60°, ∴ PB = BD. ∴ .
(3)设正△ABC的高为h,则 h = BC· sin 60°.
∵ BC · h = 4, 即BC · BC· sin 60° = 4,解得BC = 4.
连接OB,OC,OP,作OE⊥BC于E.
由△ABC是正三角形知∠BOC = 120°,从而得∠OCE = 30°,
∴ .
由∠ABP = 15° 得 ∠PBC =∠ABC +∠ABP = 75°,于是 ∠POC = 2∠PBC = 150°.
∴ ∠PCO =(180°-150°)÷2 = 15°.
如图,作等腰直角△RMN,在直角边RM上取点G,使∠GNM = 15°,则∠RNG = 30°,作GH⊥RN,垂足为H.设GH = 1,则 cos∠GNM = cos15° = MN.
∵ 在Rt△GHN中,NH = GN · cos30°,GH = GN · sin30°.
于是 RH = GH,MN = RN · sin45°,∴ cos15° =.
在图中,作OF⊥PC于E,∴ PC = 2FD = 2 OC ·cos15° =.
(2009年梅州市)如图 ,梯形ABCD中,,点在上,连与的延长线交于点G.
D
C
F
E
A
B
G
(1)求证:;
(2)当点F是BC的中点时,过F作交于点,若,求的长.
【关键词】相似三角形
【答案】(1)证明:∵梯形,,
∴,
∴.
(2) 由(1),
又是的中点,
∴,
∴
又∵,,
∴,得.
∴,
∴.
9、(2008 湖南 益阳)△ABC是一块等边三角形的废铁片,利用其剪裁一个正方形DEFG,使正方形的一条边DE落在BC上,顶点F、G分别落在AC、AB上.
Ⅰ.证明:△BDG≌△CEF;
A
B
C
D
E
F
G
图 (3)
G′
F′
E′
D′
A
B
C
D
E
F
G
图 (1)
A
B
C
D
E
F
G
图 (2)
Ⅱ. 探究:怎样在铁片上准确地画出正方形.
小聪和小明各给出了一种想法,请你在Ⅱa和Ⅱb的两个问题中选择一个你喜欢的问题解答. 如果两题都解,只以Ⅱa的解答记分.
Ⅱa. 小聪想:要画出正方形DEFG,只要能计算出正方形的边长就能求出BD和CE的长,从而确定D点和E点,再画正方形DEFG就容易了.
设△ABC的边长为2 ,请你帮小聪求出正方形的边长(结果用含根号的式子表示,不要求分母有理化) .
Ⅱb. 小明想:不求正方形的边长也能画出正方形. 具体作法是:
①在AB边上任取一点G’,如图作正方形G’D’E’F’;
②连结BF’并延长交AC于F;
③作FE∥F’E’交BC于E,FG∥F′G′交AB于G,GD∥G’D’交BC于D,则四边形DEFG即为所求.
你认为小明的作法正确吗?说明理由.
10、(2008 湖北 恩施) 如图11,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若∆ABC固定不动,∆AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.
(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明.
(2)求m与n的函数关系式,直接写出自变量n的取值范围.
(3)以∆ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图12).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BD+CE=DE.
G
y
x
O
F
E
D
C
B
A
G
F
E
D
C
B
A
(4)在旋转过程中,(3)中的等量关系BD+CE=DE是否始终成立,若成立,请证明,若不成立,请说明理由.
A
B
C
D
E
R
P
H
Q
(第1题图)
11、 (08浙江温州)如图,在中,,,,分别是边的中点,点从点出发沿方向运动,过点作于,过点作交于,当点与点重合时,点停止运动.设,.
(1)求点到的距离的长;
(2)求关于的函数关系式(不要求写出自变量的取值范围);
(3)是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由.
12、(08山东省日照市)在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x.
(1)用含x的代数式表示△MNP的面积S;
(2)当x为何值时,⊙O与直线BC相切?
(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?
A
B
C
M
N
P
图 1
O
18、在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x.
(1)用含x的代数式表示△MNP的面积S;
(2)当x为何值时,⊙O与直线BC相切?
(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?
A
B
C
M
N
D
图 2
O
A
B
C
M
N
P
图 3
O
A
B
C
M
N
P
图 1
O
9、Ⅰ.证明:∵DEFG为正方形,
∴GD=FE,∠GDB=∠FEC=90°
∵△ABC是等边三角形,∴∠B=∠C=60°
∴△BDG≌△CEF(AAS)
Ⅱa.解法一:设正方形的边长为x,作△ABC的高AH,
A
B
C
D
E
F
G
解图 (2)
H
求得
由△AGF∽△ABC得:
解之得:(或)
解法二:设正方形的边长为x,则
在Rt△BDG中,tan∠B=,
∴
A
B
C
D
E
F
G
解图 (3)
G’
F’
E’
D’
解之得:(或)
解法三:设正方形的边长为x,
则
由勾股定理得:
解之得:
Ⅱb.解: 正确
由已知可知,四边形GDEF为矩形
∵FE∥F’E’ ,
∴,
同理,
∴
又∵F’E’=F’G’,
∴FE=FG
因此,矩形GDEF为正方形
10、解:(1)∆ABE∽∆DAE, ∆ABE∽∆DCA
∵∠BAE=∠BAD+45°,∠CDA=∠BAD+45°
∴∠BAE=∠CDA
又∠B=∠C=45°
∴∆ABE∽∆DCA
(2)∵∆ABE∽∆DCA
∴
由依题意可知CA=BA=
∴
∴m=
自变量n的取值范围为1