- 475.00 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
相似三角形
◆课前热身
1.如图,已知,那么下列结论正确的是( )
A. B. C. D.
A
C
D
B
(第2题图)
A
B
D
C
E
F
1题
2.如图所示,给出下列条件:
①; ②;
③; ④.
其中单独能够判定的个数为( )
A.1 B.2 C.3 D.4
3.已知△ABC∽△DEF,且AB:DE=1:2,则△ABC的面积与△DEF的面积之比为( )
A.1:2 B.1:4 C.2:1 D.4:1
4.如图,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论:
(1)DE=1,(2)△CDE∽△CAB,(3)△CDE的面积与△CAB的面积之比为1:4.
其中正确的有:( )
A.0个 B.1个 C.2个 D.3个
【参考答案】
1. A
2. C
3. B
4. D
◆考点聚焦
1.了解线段的比、成比例线段、黄金分割、相似图形有关概念及性质.
2.探索并掌握三角形相似的性质及条件,并能利用相似三角形的性质解决简单的实际问题.
3.掌握图形位似的概念,能用位似的性质将一个图形放大或缩小.
4.掌握用坐标表示图形的位置与变换,在给定的坐标系中,会根据坐标描出点的位置或由点的位置写出它的坐标,灵活运用不同方式确定物体的位置.
◆备考兵法
1.证明三角形相似的方法常用的有三个,到底用哪个要根据具体情况而定,要注意基本图形的应用,如“A型”“X型”“母子型”等.
2.用相似三角形的知识解决现实生活中实际问题,关键是要先把实际问题转化为数学问题,识别或作出相似三角形,再利用相似三角形的性质求解,并回答实际问题,注意题目的解一定要符合题意.
3.用直角坐标系中的点描述物体的位置,用坐标的方法来研究图形的运动变换,是较为常见的考法,要注意训练.
◆考点链接
一、相似三角形的定义
三边对应成_________,三个角对应________的两个三角形叫做相似三角形.
二、相似三角形的判定方法
1. 若DE∥BC(A型和X型)则______________.
2. 射影定理:若CD为Rt△ABC斜边上的高(双直角图形)
则Rt△ABC∽Rt△ACD∽Rt△CBD且AC2=________,CD2=_______,BC2=__ ____.
3. 两个角对应相等的两个三角形__________.
4. 两边对应成_________且夹角相等的两个三角形相似.
5. 三边对应成比例的两个三角形___________.
三、相似三角形的性质
1. 相似三角形的对应边_________,对应角________.
2. 相似三角形的对应边的比叫做________,一般用k表示.
3. 相似三角形的对应角平分线,对应边的________线,对应边上的_______线的比等于_______比,周长之比也等于________比,面积比等于_________.
◆典例精析
例1(山西太原)甲、乙两盏路灯底部间的距离是30米,一天晚上,当小华走到距路灯乙底部5米处时,发现自己的身影顶部正好接触路灯乙的底部.已知小华的身高为1.5米,那么路灯甲的高为 米.
甲
小华乙
【答案】9.
【解析】本题考查相似的有关知识,相似三角形的应用.设路灯高为米,由相似得
,解得,所以路灯甲的高为9米,故填9.
例2(浙江丽水)如图,在已建立直角坐标系的4×4正方形方格纸中,△划格点三角形(三角形的三个顶点都是小正方形的顶点),若以格点P,A,B为顶点的三角形与△ABC相似(全等除外),则格点P的坐标是_______.
【答案】 P1(1,4),P2(3,4).
点拨:这种题常见的错误是漏解,平时要多加强这方面的训练,以培养思维的严密性.
拓展变式 在Rt△ABC中,斜边AC上有一动点D(不与点A,C重合),过D点作直线截△ABC,使截得的三角形与△ABC相似,则满足这样条件的直线共有______条.
【答案】 3
例3 如图,已知平行四边形ABCD中,E是AB边的中点,DE交AC于点F,AC,DE
把平行四边形ABCD分成的四部分的面积分别为S1,S2,S3,S4.下面结论:①只有一对相似三角形;②EF:ED=1:2;③S1:S2:S3:S4=1:2:4:5.其中正确的结论是( )
A.①③ B.③ C.① D.①②
【答案】 B
【解析】 ∵AB∥DC,∴△AEF∽△CDF,但本题还有一对相似三角形是△ABC≌△CDA(全等是相似的特例).
∴①是错的.
∵,∴②EF:ED=1:2是错的.
∴S△AEF:S△CDF =1:4,S△AEF:S△ADF =1:2.
∴S1:S2:S3:S4=1:2:4:5,③正确.
点拨 ①利用相似三角形的特征和等高三角形的面积比等于底边之比;(共底三角形的面积之比等于高之比)
②和全等三角形一样,中考试题往往把需要证明的两个相似三角形置于其他图形(如等边三角形、等腰直角三角形、平行四边形、矩形、菱形、正方形和梯形)中,在解题时要充分挖掘其中隐含的相等角、成比例的线段和平行线,注意从复杂的图形中分离出基本的相似三角形.
拓展变式 点E是ABCD的边BC延长线上的一点,AE与CD相交于点G,则图中相似三角形共有( )
A.2对 B.3对 C.4对 D.5对
【答案】 C
◆迎考精练
一、选择题
1.(江苏省)如图,在方格纸中,将图①中的三角形甲平移到图②
中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( )
A.先向下平移3格,再向右平移1格
B.先向下平移2格,再向右平移1格
C.先向下平移2格,再向右平移2格
D.先向下平移3格,再向右平移2格
2.(浙江杭州)如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值( )
A.只有1个 B.可以有2个
C.有2个以上但有限 D.有无数个
D
B
C
A
N
M
O
3.(浙江宁波)如图,菱形ABCD中,对角线AC、BD相交于点O,M、N分别是边AB、AD的中点,连接OM、ON、MN,则下列叙述正确的是( )
A.△AOM和△AON都是等边三角形
B.四边形MBON和四边形MODN都是菱形
C.四边形AMON与四边形ABCD是位似图形
D.四边形MBCO和四边形NDCO都是等腰梯形
4.(浙江义乌)在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比。已知这本书的长为20cm,则它的宽约为( )
A.12.36cm B.13.6cm C.32.36cm D.7.64cm
5.(湖南娄底)小明在一次军事夏令营活动中,进行打靶训练,在用枪瞄准目标点B时,要使眼睛O、准星A、目标B在同一条直线上,如图所示,在射击时,小明有轻微的抖动,致使准星A偏离到A′,若OA=0.2米,OB=40米,AA′=0.0015米,则小明射击到的点B′偏离目标点B的长度BB′为 ( )
A.3米 B.0.3米 C.0.03米 D.0.2米
6.(甘肃白银)如图,小东用长为3.2m的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m
、与旗杆相距22m,则旗杆的高为( )
A.12m B.10m C.8m D.7m
7.(天津市)在和中,,如果的周长是16,面积是12,那么的周长、面积依次为( )
A.8,3 B.8,6 C.4,3 D.4,6
二、填空题
1. (山东滨州)在平面直角坐标系中,顶点的坐标为,若以原点O为位似中心,画的位似图形,使与的相似比等于,则点的坐标为 .
2.(黑龙江牡丹江)如图,中,直线交于点交于点交于点若则 .
A
E
F
D
G
C
B
第2题
3.(湖北孝感)如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是4,9和49.则△ABC的面积是 .
4.(山东日照)将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′,F,C为顶点的三角形与△ABC
相似,那么BF的长度是 .
E
(第4题图)
A
B′
C
F
B
5.(福建莆田)如图,两处被池塘隔开,为了测量两处的距离,在外选一适当的点,连接,并分别取线段的中点,测得=20m,则=__________m.
A
E
C
F
B
第5题图
三、解答题
A
C
B
D
E
1.(湖南郴州)如图,在ABC中,已知DE∥BC,AD=4,DB=8,DE=3,
(1)求的值,(2)求BC的长
2.(湖南常德)如图,△ABC内接于⊙O,AD是△ABC的边BC上的高,AE是⊙O的直径,连接BE,△ABE与△ADC相似吗?请证明你的结论.
3.(湖北武汉)如图1,在中,,于点,点是边上一点,连接交于,交边于点.
(1)求证:;
(2)当为边中点,时,如图2,求的值;
(3)当为边中点,时,请直接写出的值.
B
B
A
A
C
O
E
D
D
E
C
O
F
图1
图2
F
4.(安徽)如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G.
(1)写出图中三对相似三角形,并证明其中的一对;
A
B
M
F
G
D
E
C
第4题图
(2)连结FG,如果α=45°,AB=,AF=3,求FG的长.
5.(吉林省)如图,⊙中,弦相交于的中点,连接并延长至点,使,连接BC、.
第5题图
O
F
D
A
E
B
C
(1)求证:;
(2)当时,求的值
6.(广东梅州)如图,梯形ABCD中,,点在上,连与的延长线交于点G.
(1)求证:;
D
C
F
E
A
B
G
6题
(2)当点F是BC的中点时,过F作交于点,若,求的长.
【参考答案】
选择题
1. D
2. B
3. C
4. A
5. B
6. A
7. A
填空题
1. (4,6)
2.
3. 144
4. 或2;
5. 40
解答题
1. 解:(1)∵
∴
∴
(2)∵,所以
∴
∵
∴
∴
2. △ABE 与△ADC相似.理由如下:
在△ABE与△ADC中
∵AE是⊙O的直径, ∴∠ABE=90o,
∵AD是△ABC的边BC上的高,
∴∠ADC=90o, ∴∠ABE=∠ADC.
又∵同弧所对的圆周角相等,
∴∠BEA=∠DCA.
∴△ABE ~△ADC.
3. 解:(1),.
.
,
,.
;
B
A
D
E
C
O
F
G
(2)解法一:作,交的延长线于.
,是边的中点,.
由(1)有,,
.
,,
又,.
,.
,,,
,.
B
A
D
E
C
O
F
解法二:于,
..
设,则,
.
,
.
由(1)知,设,,.
在中,.
..
(3).
4. (1)证:△AMF∽△BGM,△DMG∽△DBM,△EMF∽△EAM(写出两对即可)以下证明△AMF∽△BGM.
∵∠AFM=∠DME+∠E=∠A+∠E=∠BMG,∠A=∠B
∴△AMF∽△BGM.
(2)解:当α=45°时,可得AC⊥BC且AC=BC
∵M为AB的中点,∴AM=BM=
又∵AMF∽△BGM,∴
∴
又,∴,
∴
5. (1)证明:
是的中位线,
又
(2)解:由(1)知,
又
.
6. (1)证明:∵梯形,,
∴,
∴.
D
C
F
E
A
B
G
6题图
(2) 由(1),
又是的中点,
∴,
∴
又∵,,
∴,得.
∴,
∴.