- 461.00 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
1、(2017黄冈)已知:如图,在⊙O中,,则的度数为( )
A. 30° B. 35° C. 45° D.70°
解:∵OA⊥BC
∴=
∵∠AOB=70°
∴∠ADC=∠AOB=35°
故选:B.
2、(2017毕节)如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,则∠BAD为( )
A.30° B.50° C.60° D.70°
解:连接BD,
∵∠ACD=30°,
∴∠ABD=30°,
∵AB为直径,
∴∠ADB=90°,
∴∠BAD=90°﹣∠ABD=60°.
故选C.
3、如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为上一点(不与O、A两点重合),则cosC的值为( )
A. B. C. D.
如图,连接AB,
∵∠AOB=90°,∴AB为圆的直径,
由圆周角定理,得∠C=∠ABO,
在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,
∴cosC=cos∠ABO= .
故选D.
4、(2016南宁)如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为( )
A.140° B.70° C.60° D.40°
解:∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,
∴∠DOE=180°﹣40°=140°,
∴∠P=∠DOE=70°.故选B.
5、(2017泸州)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,AE=1,则弦CD的长是( )
A. B. C. D.
【答案】B.
【解析】
6、(2017青岛)如图,AB 是⊙O 的直径,C,D,E 在⊙O 上,若∠AED=20°,则∠BCD的度数为( )
A、100° B、110° C、115° D、120°
【答案】B
【解析】试题分析:如下图,连接AD,AD
∵∠AED=20°
∴∠ABD=∠AED=20°
∵AB 是⊙O 的直径
∴∠ADB=90°
∴∠BAD=70°
∴∠BCD=110°
7、(2017南京)过三点(2,2),(6,2),(4,5)的圆的圆心坐标为( )
A.(4,) B.(4,3) C.(5,) D.(5,3)
解:已知A(2,2),B(6,2),C(4,5),
∴AB的垂直平分线是x==4,
设直线BC的解析式为y=kx+b,
把B(6,2),C(4,5)代入上式得
, 解得,
∴y=﹣x+11,
设BC的垂直平分线为y=x+m,
把线段BC的中点坐标(5,)代入得m=,
∴BC的垂直平分线是y=x+,
当x=4时,y=,
∴过A、B、C三点的圆的圆心坐标为(4,).
故选A.
8、(2017贵港)如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是( )
A.45° B.60° C.75° D.85°
解:∵B是的中点,∴∠AOB=2∠BDC=80°,
又∵M是OD上一点,
∴∠AMB≤∠AOB=80°.
则不符合条件的只有85°.故选D.
9、如图,AB为⊙O的直径,弦DC垂直AB于点E,∠DCB=30°,EB=3,则弦AC的长度为( )
A.3 B.4 C.5 D.6
解:连结OC,AC,
∵弦DC垂直AB于点E,∠DCB=30°,
∴∠ABC=60°,
∴△BOC是等边三角形,
∵EB=3,
∴OB=6,
∴AB=12,
AB为⊙O的直径,
∴∠ACB=90°,
在Rt△ACB,AC=12×=6.
故选:D.
10、(2017重庆A卷)如图,BC是⊙O的直径,点A在圆上,连接AO,AC,∠AOB=64°,则∠ACB= .
解:∵AO=OC,
∴∠ACB=∠OAC,
∵∠AOB=64°,
∴∠ACB+∠OAC=64°,
∴∠ACB=64°÷2=32°.
故答案为:32°.
11、(2017西宁)如图,四边形ABCD内接于⊙O,点E在BC的延长线上,若∠BOD=120°,则∠DCE= 60° .
解:∵∠BOD=120°,
∴∠A=∠BOD=60°.
∵四边形ABCD是圆内接四边形,
∴∠DCE=∠A=60°.
故答案为:60°.
12、(2017甘肃省卷)如图,内接于⊙O,若,则 .
【答案】58.
【解析】
试题分析:连接OB,则OA=OB,所以∠OBA=∠OAB=32°,所以∠AOB=180°-2×32°=116°,因为∠AOB=2∠C,所以2∠C=116°,所以∠C=58°.
13、(2017南京)如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC= °.
解:∵四边形ABCD是菱形,∠D=78°,∴∠ACB=∠DCB==51°,
∵四边形AECD是圆内接四边形,∴∠AEB=∠D=78°,
∴∠EAC=∠AEB﹣∠ACE=27°,
故答案为:27.
14、(2017北京)如图,为⊙O的直径,为⊙O上的点,.若,则 .
【答案】25°.
考点:圆周角定理
15、(2017荆州)如图,A、B、C是⊙O上的三点,且四边形OABC是菱形.若点D是圆上异于A、B、C的另一点,则∠ADC的度数是 60°或120° .
解:连接OB,
∵四边形OABC是菱形,
∴AB=OA=OB=BC,
∴△AOB是等边三角形,
∴∠ADC=60°,∠AD′C=120°.
故答案为:60°或120°.
16、(2017台州)如图,已知等腰直角△ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径
(1)求证:△APE是等腰直角三角形;
(2)若⊙O的直径为2,求 的值
(1)证明:∵△ABC是等腰直角三角形,
∴∠C=∠ABC=45°,∴∠PEA=∠ABC=45°
又∵PE是⊙O的直径,∴∠PAE=90°,
∴∠PEA=∠APE=45°,
∴ △APE是等腰直角三角形.
(2)解:∵△ABC是等腰直角三角形,
∴AC=AB,
同理AP=AE,
又∵∠CAB=∠PAE=90°,∴∠CAP=∠BAE,
∴△CPA≌△BAE,∴CP=BE,
在Rt△BPE中,∠PBE=90°,PE=2,
∴PB2+BE2=PE2,∴CP2+PB2=PE2=4.
17、(2017广州)如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是( )
A. B. C. D.
解:∵AB⊥CD,∴=,CE=DE,
∴∠BOC=2∠BAD=40°,
∴∠OCE=90°-40°=50°.
故选:D.
18、(2017广安)如图,AB是⊙O的直径,且经过弦CD的中点H,已知cos∠CDB=,BD=5,则OH的长度为( )
A. B. C.1 D.
解:连接OD,如图所示:
∵AB是⊙O的直径,且经过弦CD的中点H,
∴AB⊥CD,
∴∠OHD=∠BHD=90°,
∵cos∠CDB==,BD=5,
∴DH=4,
∴BH==3,
设OH=x,则OD=OB=x+3,
在Rt△ODH中,由勾股定理得:x2+42=(x+3)2,
解得:x=,
∴OH=;
故选:D.
19、(2017潍坊)点A、C为半径是3的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为( )
A.或2 B.或2 C.或2 D.或2
解:过B作直径,连接AC交AO于E,
∵点B为的中点,
∴BD⊥AC,
①如图①,∵点D恰在该圆直径的三等分点上,
∴BD=×2×3=2,∴OD=OB﹣BD=1,
∵四边形ABCD是菱形,∴DE=BD=1,∴OE=2,
连接OD,
∵CE==,
∴边CD==;
如图②,BD=×2×3=4,
同理可得,OD=1,OE=1,DE=2,
连接OD,
∵CE===2,
∴边CD===2,
故选D.
20、(2017盐城)如图,将⊙O沿弦AB折叠,点C在上,点D在上,若∠ACB=70°,则∠ADB= 110 °.
解:∵点C在上,点D在上,若∠ACB=70°,∴∠ADB+∠ACB=180°,
∴∠ADB=110°,故答案为:110.
21、(2017海南)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是 .
解:如图,∵点M,N分别是AB,AC的中点,∴MN=BC,
∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,
连接BO并延长交⊙O于点C′,连接AC′,
∵BC′是⊙O的直径,∴∠BAC′=90°.
∵∠ACB=45°,AB=5,
∴∠AC′B=45°,
∴BC′===5,
∴MN最大=.故答案为:.
22、(2017自贡)如图,等腰△ABC内接于⊙O,已知AB=AC,∠ABC=30°,BD是⊙O的直径,如果CD=,则AD= 4 .
解:∵AB=AC,∴∠ABC=∠ACB=∠ADB=30°,
∵BD是直径,∴∠BAD=90°,∠ABD=60°,
∴∠CBD=∠ABD﹣∠ABC=30°,∴∠ABC=∠CBD,
∴==,∴=,
∴AD=CB,
∵∠BCD=90°,∴BC=CD•tan60°=•=4,
∴AD=BC=4.故答案为4.
23、(2017苏州)如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE边于点F.
(1)求证:△DOE∽△ABC;
(2)求证:∠ODF=∠BDE;
(3)连接OC,设△DOE的面积为S1,四边形BCOD的面积为S2,若=,求sinA的值.
(1)证明:∵AB是⊙O的直径,
∴∠ACB=90°,
∵DE⊥AB,
∴∠DEO=90°,
∴∠DEO=∠ACB,
∵OD∥BC,
∴∠DOE=∠ABC,
∴△DOE~△ABC;
(2)证明:∵△DOE~△ABC,
∴∠ODE=∠A,
∵∠A和∠BDC是所对的圆周角,
∴∠A=∠BDC,
∴∠ODE=∠BDC,
∴∠ODF=∠BDE;
(3)解:∵△DOE~△ABC,
∴,
即S△ABC=4S△DOE=4S1,
∵OA=OB,
∴,即S△BOC=2S1,
∵,
∴,
∴,
即,
∴.