• 2.76 MB
  • 2021-05-13 发布

云南省中考数学压轴题及答案

  • 24页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
题目篇 ‎(2014年昆明) 23. (本小题9分)如图,在平面直角坐标系中,抛物线与x轴交于点A(,0)、B(4,0)两点,与y轴交于点C。‎ (1) 求抛物线的解析式;‎ (2) 点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度向C点运动。其中一个点到达终点时,另一个点也停止运动。当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最多面积是多少?‎ (3) 当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使,求K点坐标。‎ O x y C B A P Q ‎(2013年昆明)23.(本小题9分)如图,矩形OABC在平面直角坐标系xoy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O、A两点,直线AC交抛物线于点D。‎ ‎(1)求抛物线的解析式;‎ ‎(2)求点D的坐标;‎ ‎(3)若点M在抛物线上,点N在x轴上,是否存在以点A、D、M、N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由。‎ ‎(2012年昆明)(本小题9分)如图,在平面直角坐标系中,直线交轴于点,交轴于点,抛物线的图象过点,并与直线相交于、两点.‎ ‎ 求抛物线的解析式(关系式);‎ ‎ 过点作交轴于点,求点的坐标;‎ ‎ 除点外,在坐标轴上是否存在点,使得是直角三角形?若存在,请求出点的坐标,若不存在,请说明理由.‎ ‎(2011年昆明)25、如图,在Rt△ABC中,∠C=90°,AB=‎10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为‎1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为‎2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.‎ ‎(1)求AC、BC的长;‎ ‎(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;‎ ‎(3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC是否相似,请说明理由;‎ ‎(4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由.‎ ‎(2010年昆明)25.(12分)在平面直角坐标系中,抛物线经过O(0,0)、A(4,0)、B(3,)三点.‎ ‎(1)求此抛物线的解析式;‎ ‎(2)以OA的中点M为圆心,OM长为半径作⊙M,在(1)中的抛物线上是否存在这样的点P,过点P作⊙M的切线l ,且l与x轴的夹角为30°,若存在,请求出此时点P的坐标;若不存在,请说明理由.(注意:本题中的结果可保留根号) ‎ ‎ ‎ ‎(云南省2010年)24.(本小题12分)如图,在平面直角示系中,A、B两点的坐标分别是A(-1,0)、B(4,0),点C在y轴的负半轴上,且∠ACB=90°‎ ‎(1)求点C的坐标;‎ ‎(2)求经过A、B、C三点的抛物线的解析式;‎ ‎(3)直线l⊥x轴,若直线l由点A开始沿x轴正方向以每秒1个单位的速度匀速向右平移,设运动时间为t(0≤t≤5)秒,运动过程中直线l在△ABC中所扫 ‎(云南省2013年)23.(9分)如图,四边形ABCD是等腰梯形,下底AB在x轴上,点D在y轴上,直线AC与y轴交于点E(0,1),点C的坐标为(2,3).‎ ‎(1)求A、D两点的坐标;‎ ‎(2)求经过A、D、C三点的抛物线的函数关系式;‎ ‎(3)在y轴上是否在点P,使△ACP是等腰三角形?若存在,请求出满足条件的所有点P的坐标;若不存在,请说明理由.‎ ‎ ‎ ‎(云南省2014年)23.(9分)在平面直角坐标系中,点O为坐标原点,矩形ABCO的顶点分别为A(3,0)、B(3,4)、C(0,4),点D在y轴上,且点D的坐标为(0,-5),点P是直线AC上的一个动点。‎ ‎(1)当点P运动到线段AC的中点时,求直线DP的解析式;‎ ‎(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M。问:在x轴的正半轴上,是否存在使△DOM与△ABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由。‎ ‎(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆,得到的圆称为动圆P。若设动圆P的半径长为AC,过点D作动圆P的两条切线与动圆P分别相切于点E、F。请探求在动圆P中,是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由。‎ 答案篇 ‎(2014年昆明) 23.‎ ‎(2013年昆明)23‎ ‎23.(9分)(2013•昆明)如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.‎ ‎(1)求抛物线的解析式;‎ ‎(2)求点D的坐标;‎ ‎(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.‎ 考点:‎ 二次函数综合题.‎ 专题:‎ 综合题.‎ 分析:‎ ‎(1)由OA的长度确定出A的坐标,再利用对称性得到顶点坐标,设出抛物线的顶点形式y=a(x﹣2)2+3,将A的坐标代入求出a的值,即可确定出抛物线解析式;‎ ‎(2)设直线AC解析式为y=kx+b,将A与C坐标代入求出k与b的值,确定出直线AC解析式,与抛物线解析式联立即可求出D的坐标;‎ ‎(3)存在,分两种情况考虑:如图所示,当四边形ADMN为平行四边形时,DM∥AN,DM=AN,由对称性得到M(3,),即DM=2,故AN=2,根据OA+AN求出ON的长,即可确定出N的坐标;当四边形ADM′N′为平行四边形,可得三角形ADQ全等于三角形N′M′P,M′P=DQ=,N′P=AQ=3,将y=﹣代入得:﹣=﹣x2+3x,求出x的值,确定出OP的长,由OP+PN′求出ON′的长即可确定出N′坐标.‎ 解答:‎ 解:(1)设抛物线顶点为E,根据题意OA=4,OC=3,得:E(2,3),‎ 设抛物线解析式为y=a(x﹣2)2+3,‎ 将A(4,0)坐标代入得:0=‎4a+3,即a=﹣,‎ 则抛物线解析式为y=﹣(x﹣2)2+3=﹣x2+3x;‎ ‎(2)设直线AC解析式为y=kx+b(k≠0),‎ 将A(4,0)与C(0,3)代入得:,‎ 解得:,‎ 故直线AC解析式为y=﹣x+3,‎ 与抛物线解析式联立得:,‎ 解得:或,‎ 则点D坐标为(1,);‎ ‎(3)存在,分两种情况考虑:‎ ‎①当点M在x轴上方时,如答图1所示:‎ 四边形ADMN为平行四边形,DM∥AN,DM=AN,‎ 由对称性得到M(3,),即DM=2,故AN=2,‎ ‎∴N1(2,0),N2(6,0);‎ ‎②当点M在x轴下方时,如答图2所示:‎ 过点D作DQ⊥x轴于点Q,过点M作MP⊥x轴于点P,可得△ADQ≌△NMP,‎ ‎∴MP=DQ=,NP=AQ=3,‎ 将yM=﹣代入抛物线解析式得:﹣=﹣x2+3x,‎ 解得:xM=2﹣或xM=2+,‎ ‎∴xN=xM﹣3=﹣﹣1或﹣1,‎ ‎∴N3(﹣﹣1,0),N4(﹣1,0).‎ 综上所述,满足条件的点N有四个:N1(2,0),N2(6,0),N3(﹣﹣1,0),N4(﹣1,0).‎ 点评:‎ 此题考查了二次函数综合题,涉及的知识有:待定系数法确定抛物线解析式,一次函数与二次函数的交点,平行四边形的性质,以及坐标与图形性质,是一道多知识点的探究型试题.‎ ‎(2012年昆明)23.‎ ‎[答案] ;;‎ ‎ 、或、或、或 ‎ 如图,因为一次函数交轴于点,所以,,,即.‎ 交轴于点,所以,,,即.‎ ‎ 由、是抛物线的图象上的点,‎ ‎ ‎ 所以,抛物线的解析式是:‎ ‎ 如图,、 ‎ ‎ ∴ 在中,‎ ‎ ∴点的坐标:‎ 设除点外,在坐标轴上还存在点,使得是直角三角形 ‎ .在中,若,那么是以为直径的圆与坐标轴的交点,‎ ‎ .若交点在上(如图),设,则有,‎ ‎ ‎ ‎ ‎ ‎ ,此时 ‎ .若交点在上(如图),设,此时过作垂直于点,则有,于是:‎ ‎ ‎ ‎ ,‎ ‎ ,此时,‎ ‎ 或 ‎ .在中,若,如图,设,同样过作垂直于点,则在中,有 ‎ ‎ ‎ ‎ ,此时,‎ ‎ 综上所述,除点外,在坐标轴上还存在点,使得是直角三角形,满足条件的点的坐标是:、或、或、或.‎ ‎(2011年昆明)25‎ 答案:解:(1)设AC=4x,BC=3x,在Rt△ABC中,AC2+BC2=AB2,‎ 即:(4x)2+(3x)2=102,解得:x=2,∴AC=8cm,BC=6cm;‎ ‎(2)①当点Q在边BC上运动时,过点Q作QH⊥AB于H,‎ ‎∵AP=x,∴BP=10﹣x,BQ=2x,∵△QHB∽△ACB,‎ ‎∴,∴QH=x,y=BP•QH=(10﹣x)•x=﹣x2+8x(0<x≤3),‎ ‎②当点Q在边CA上运动时,过点Q作QH′⊥AB于H′,‎ ‎∵AP=x,‎ ‎∴BP=10﹣x,AQ=14﹣2x,∵△AQH′∽△ABC,‎ ‎∴,即:,解得:QH′=(14﹣x),‎ ‎∴y=PB•QH′=(10﹣x)•(14﹣x)=x2﹣x+42(3<x<7);‎ ‎∴y与x的函数关系式为:y=;‎ ‎(3)∵AP=x,AQ=14﹣x,‎ ‎∵PQ⊥AB,∴△APQ∽△ACB,∴,即:,‎ 解得:x=,PQ=,∴PB=10﹣x=,∴,‎ ‎∴当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC不相似;‎ ‎(4)存在.‎ 理由:∵AQ=14﹣2x=14﹣10=4,AP=x=5,∵AC=8,AB=10,‎ ‎∴PQ是△ABC的中位线,∴PQ∥AB,∴PQ⊥AC,‎ ‎∴PQ是AC的垂直平分线,∴PC=AP=5,∴当点M与P重合时,△BCM的周长最小,‎ ‎∴△BCM的周长为:MB+BC+MC=PB+BC+PC=5+6+5=16.∴△BCM的周长最小值为16.‎ ‎(2010年昆明)25.‎ ‎25.(12分) 解:(1)设抛物线的解析式为:‎ ‎ 由题意得: ……………1分 解得: ………………2分 ‎∴抛物线的解析式为: ………………3分 ‎(2)存在 ………………4分 ‎ ‎ l′‎ ‎[来源:学科网ZXXK]‎ 抛物线的顶点坐标是,作抛物线和⊙M(如图),‎ 设满足条件的切线 l 与 x 轴交于点B,与⊙M相切于点C 连接MC,过C作CD⊥ x 轴于D ‎ ‎∵ MC = OM = 2, ∠CBM = 30°, CM⊥BC ‎∴∠BCM = 90° ,∠BMC = 60° ,BM = ‎2CM = 4 , ∴B (-2, 0) ‎ ‎ 在Rt△CDM中,∠DCM = ∠CDM - ∠CMD = 30°‎ ‎∴DM = 1, CD = = ∴ C (1, )‎ 设切线 l 的解析式为:,点B、C在 l 上,可得:‎ ‎ 解得: ‎ ‎∴切线BC的解析式为:‎ ‎∵点P为抛物线与切线的交点 由 解得: ‎ ‎∴点P的坐标为:, ………………8分 ‎∵ 抛物线的对称轴是直线 此抛物线、⊙M都与直线成轴对称图形 于是作切线 l 关于直线的对称直线 l′(如图)‎ 得到B、C关于直线的对称点B1、C1‎ l′满足题中要求,由对称性,得到P1、P2关于直线的对称点:‎ ‎ ,即为所求的点.‎ ‎∴这样的点P共有4个:,,, ………12分 ‎(本题其它解法参照此标准给分)‎ ‎(云南省2010年)24.‎ 分析:(1)根据A、B的坐标,可求得OA、OB的长,在Rt△ABC中,OC⊥AB,利用射影定理即可求得OC的值,从而得到C点的坐标. (2)已知了抛物线上的三点坐标,可利用待定系数法求得抛物线的解析式. (3)此题应分段考虑: ①当0≤t≤1时,直线l扫过△ABC的部分是个直角三角形,设直线l与AC、AB的交点为M、N,易证得△AMN∽△ACO,根据相似三角形所得比例线段即可求得MN的值,从而利用三角形的面积公式求得S、t的函数关系式; ②当1<t≤5时,直线l扫过△ABC的部分是个多边形,设直线l与BC、AB的交点为M、N,同①可求得MN的长,即可得到△BMN的面积表达式,那么△ACB、△BMN的面积差即为直线l扫过部分的面积,由此求得S、t的函数关系式.‎ 解答:解:(1)已知A(-1,0),B(4,0),则OA=1,OB=4; 在Rt△ABC中,CO⊥AB, 由射影定理得:OC2‎ ‎=OA•OB=4, 即OC=2, 故C(0,-2). (2)设抛物线的解析式为:y=a(x+1)(x-4), 依题意有:a(0+1)(0-4)=-2,a= , 故抛物线的解析式为:y= (x+1)(x-4)= x2- x-2.(3)①当0≤t≤1时,由题意知:AM=t; ∵直线l∥OC,且OC=2OA, ∴MN=2AM=2t; 故S= t•2t=t2; ②当1<t≤5时,由于AM=t,AB=5,则BM=5-t; ∵直线l∥OC,且OB=2OC, ∴MN= BM= , 故S= ×5×2- × =- t2+ t- ; 综上可知:S、t的函数关系式为: S= - t2+ t- ; 点评:此题主要考查了直角三角形的性质、相似三角形的性质、二次函数解析式的确定、图形面积的求法等知识;(3)题中,一定要根据直线l的不同位置来分类讨论,以免漏解.‎ ‎(云南省2013年)23‎ 解答:‎ 解:(1)设直线EC的解析式为y=kx+b,根据题意得:‎ ‎,解得,‎ ‎∴y=x+1,‎ 当y=0时,x=﹣1,‎ ‎∴点A的坐标为(﹣1,0).‎ ‎∵四边形ABCD是等腰梯形,C(2,3),‎ ‎∴点D的坐标为(0,3).‎ ‎(2)设过A(﹣1,0)、D(0,3)、C(2,3)三点的抛物线的解析式为y=ax2+bx+c,则有:‎ ‎,解得,‎ ‎∴抛物线的关系式为:y=x2﹣2x+3.‎ ‎(3)存在.‎ ‎①作线段AC的垂直平分线,交y轴于点P1,交AC于点F.‎ ‎∵OA=OE,∴△OAE为等腰直角三角形,∠AEO=45°,‎ ‎∴∠FEP1=∠AEO=45°,∴△FEP1为等腰直角三角形.‎ ‎∵A(﹣1,0),C(2,3),点F为AC中点,‎ ‎∴F(,),‎ ‎∴等腰直角三角形△FEP1斜边上的高为,‎ ‎∴EP1=1,‎ ‎∴P1(0,2);‎ ‎②以点A为圆心,线段AC长为半径画弧,交y轴于点P2,P3.‎ 可求得圆的半径长AP2=AC=3.‎ 连接AP2,则在Rt△AOP2中,‎ OP2===,‎ ‎∴P2(0,).‎ ‎∵点P3与点P2关于x轴对称,∴P3(0,﹣);‎ ‎③以点C为圆心,线段CA长为半径画弧,交y轴于点P4,P5,则圆的半径长 CP4=CA=3,‎ 在Rt△CDP4中,CP4=3,CD=2,‎ ‎∴DP4===,‎ ‎∴OP4=OD+DP4=3+,‎ ‎∴P4(0,3+);‎ 同理,可求得:P5(0,3﹣).‎ 综上所述,满足条件的点P有5个,分别为:P1(0,2),P2(0,),P3(0,﹣),P4(0,3+),P5(0,3﹣).‎ ‎(云南省2014年)23.‎ 考点: 圆的综合题;待定系数法求一次函数解析式;垂线段最短;勾股定理;切线长定理;相似三角形的判定与性质.菁优网版权所有 专题: 综合题;存在型;分类讨论.‎ 分析: (1)只需先求出AC中点P的坐标,然后用待定系数法即可求出直线DP的解析式.‎ ‎(2)由于△DOM与△ABC相似,对应关系不确定,可分两种情况进行讨论,利用三角形相似求出OM的长,即可求出点M的坐标.‎ ‎(3)易证S△PED=S△PFD.从而有S四边形DEPF=2S△PED=DE.由∠DEP=90°得DE2=DP2﹣PE2=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE也最短,对应的四边形DEPF的面积最小.借助于三角形相似,即可求出DP⊥AC时DP的值,就可求出四边形DEPF面积的最小值.‎ 解答: 解:(1)过点P作PH∥OA,交OC于点H,如图1所示.‎ ‎∵PH∥OA,‎ ‎∴△CHP∽△COA.‎ ‎∴==.‎ ‎∵点P是AC中点,‎ ‎∴CP=CA.‎ ‎∴HP=OA,CH=CO.‎ ‎∵A(3,0)、C(0,4),‎ ‎∴OA=3,OC=4.‎ ‎∴HP=,CH=2.‎ ‎∴OH=2.‎ ‎∵PH∥OA,∠COA=90°,‎ ‎∴∠CHP=∠COA=90°.‎ ‎∴点P的坐标为(,2).‎ 设直线DP的解析式为y=kx+b,‎ ‎∵D(0,﹣5),P(,2)在直线DP上,‎ ‎∴‎ ‎∴‎ ‎∴直线DP的解析式为y=x﹣5.‎ ‎(2)①若△DOM∽△ABC,图2(1)所示,‎ ‎∵△DOM∽△ABC,‎ ‎∴=.‎ ‎∵点B坐标为(3,4),点D的坐标为(0.﹣5),‎ ‎∴BC=3,AB=4,OD=5.‎ ‎∴=.‎ ‎∴OM=.‎ ‎∵点M在x轴的正半轴上,‎ ‎∴点M的坐标为(,0)‎ ‎②若△DOM∽△CBA,如图2(2)所示,‎ ‎∵△DOM∽△CBA,‎ ‎∴=.‎ ‎∵BC=3,AB=4,OD=5,‎ ‎∴=.‎ ‎∴OM=.‎ ‎∵点M在x轴的正半轴上,‎ ‎∴点M的坐标为(,0).‎ 综上所述:若△DOM与△CBA相似,则点M的坐标为(,0)或(,0).‎ ‎(3)∵OA=3,OC=4,∠AOC=90°,‎ ‎∴AC=5.‎ ‎∴PE=PF=AC=.‎ ‎∵DE、DF都与⊙P相切,‎ ‎∴DE=DF,∠DEP=∠DFP=90°.‎ ‎∴S△PED=S△PFD.‎ ‎∴S四边形DEPF=2S△PED=2×PE•DE=PE•DE=DE.‎ ‎∵∠DEP=90°,‎ ‎∴DE2=DP2﹣PE2.=DP2﹣.‎ 根据“点到直线之间,垂线段最短”可得:‎ 当DP⊥AC时,DP最短,‎ 此时DE取到最小值,四边形DEPF的面积最小.‎ ‎∵DP⊥AC,‎ ‎∴∠DPC=90°.‎ ‎∴∠AOC=∠DPC.‎ ‎∵∠OCA=∠PCD,∠AOC=∠DPC,‎ ‎∴△AOC∽△DPC.‎ ‎∴=.‎ ‎∵AO=3,AC=5,DC=4﹣(﹣5)=9,‎ ‎∴=.‎ ‎∴DP=.‎ ‎∴DE2=DP2﹣=()2﹣=.‎ ‎∴DE=,‎ ‎∴S四边形DEPF=DE=.‎ ‎∴四边形DEPF面积的最小值为.‎ 点评: 本题考查了相似三角形的判定与性质、用待定系数法求直线的解析式、切线长定理、勾股定理、垂线段最短等知识,考查了分类讨论的思想.将求DE的最小值转化为求DP的最小值是解决第3小题的关键.另外,要注意“△DOM与△ABC相似”与“△DOM∽△ABC“之间的区别.‎ ‎ ‎