• 9.18 MB
  • 2022-03-30 发布

2013高考理科数学全国卷2试题与答案word解析版

  • 43页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷II)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅱ,理1)已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=(  ).A.{0,1,2}B.{-1,0,1,2}C.{-1,0,2,3}D.{0,1,2,3}2.(2013课标全国Ⅱ,理2)设复数z满足(1-i)z=2i,则z=(  ).A.-1+iB.-1-IC.1+iD.1-i3.(2013课标全国Ⅱ,理3)等比数列{an}的前n项和为Sn.已知S3=a2+10a1,a5=9,则a1=(  ).A.B.C.D.4.(2013课标全国Ⅱ,理4)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,lα,lβ,则(  ).A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l5.(2013课标全国Ⅱ,理5)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=(  ).A.-4B.-3C.-2D.-16.(2013课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N=10,那么输出的S=(  ).A.B.C.D.7.(2013课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为(  ).8.(2013课标全国Ⅱ,理8)设a=log36,b=log510,c=log714,则(  ).A.c>b>aB.b>c>aC.a>c>bD.a>b>c 9.(2013课标全国Ⅱ,理9)已知a>0,x,y满足约束条件若z=2x+y的最小值为1,则a=(  ).A.B.C.1D.210.(2013课标全国Ⅱ,理10)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是(  ).A.x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=011.(2013课标全国Ⅱ,理11)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为(  ).A.y2=4x或y2=8xB.y2=2x或y2=8xC.y2=4x或y2=16xD.y2=2x或y2=16x12.(2013课标全国Ⅱ,理12)已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是(  ).A.(0,1)B.C.D.第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答。第22题~第24题为选考题,考生根据要求做答。二、填空题:本大题共4小题,每小题5分.13.(2013课标全国Ⅱ,理13)已知正方形ABCD的边长为2,E为CD的中点,则=__________.14.(2013课标全国Ⅱ,理14)从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为,则n=__________.15.(2013课标全国Ⅱ,理15)设θ为第二象限角,若,则sinθ+cosθ=__________.16.(2013课标全国Ⅱ,理16)等差数列{an}的前n项和为Sn,已知S10=0,S15=25,则nSn的最小值为__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅱ,理17)(本小题满分12分)△ABC的内角A,B,C的对边分别为a,b,c,已知a=bcosC+csinB.(1)求B;(2)若b=2,求△ABC面积的最大值. 18.(2013课标全国Ⅱ,理18)(本小题满分12分)如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=.(1)证明:BC1∥平面A1CD;(2)求二面角D-A1C-E的正弦值.19.(2013课标全国Ⅱ,理19)(本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T表示为X的函数;(2)根据直方图估计利润T不少于57000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X∈[100,110),则取X=105,且X=105的概率等于需求量落入[100,110)的频率),求T的数学期望. 20.(2013课标全国Ⅱ,理20)(本小题满分12分)平面直角坐标系xOy中,过椭圆M:(a>b>0)右焦点的直线交M于A,B两点,P为AB的中点,且OP的斜率为.(1)求M的方程;(2)C,D为M上两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.21.(2013课标全国Ⅱ,理21)(本小题满分12分)已知函数f(x)=ex-ln(x+m).(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(2)当m≤2时,证明f(x)>0. 请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一题计分,做答时请写清题号.22.(2013课标全国Ⅱ,理22)(本小题满分10分)选修4—1:几何证明选讲如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BC·AE=DC·AF,B,E,F,C四点共圆.(1)证明:CA是△ABC外接圆的直径;(2)若DB=BE=EA,求过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值.23.(2013课标全国Ⅱ,理23)(本小题满分10分)选修4—4:坐标系与参数方程已知动点P,Q都在曲线C:(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点. 24.(2013课标全国Ⅱ,理24)(本小题满分10分)选修4—5:不等式选讲设a,b,c均为正数,且a+b+c=1,证明:(1)ab+bc+ac≤;(2). 2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷II)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.答案:A解析:解不等式(x-1)2<4,得-1<x<3,即M={x|-1<x<3}.而N={-1,0,1,2,3},所以M∩N={0,1,2},故选A.2.答案:A解析:==-1+i.3.答案:C解析:设数列{an}的公比为q,若q=1,则由a5=9,得a1=9,此时S3=27,而a2+10a1=99,不满足题意,因此q≠1.∵q≠1时,S3==a1·q+10a1,∴=q+10,整理得q2=9.∵a5=a1·q4=9,即81a1=9,∴a1=.4.答案:D解析:因为m⊥α,l⊥m,lα,所以l∥α.同理可得l∥β.又因为m,n为异面直线,所以α与β相交,且l平行于它们的交线.故选D.5.答案:D解析:因为(1+x)5的二项展开式的通项为(0≤r≤5,r∈Z),则含x2的项为+ax·=(10+5a)x2,所以10+5a=5,a=-1.6.答案:B解析:由程序框图知,当k=1,S=0,T=1时,T=1,S=1;当k=2时,,;当k=3时,,;当k=4时,,;…;当k=10时,,,k增加1变为11,满足k>N,输出S,所以B正确.7. 答案:A解析:如图所示,该四面体在空间直角坐标系O-xyz的图像为下图:则它在平面zOx上的投影即正视图为,故选A.8.答案:D解析:根据公式变形,,,,因为lg7>lg5>lg3,所以,即c<b<a.故选D.9.答案:B解析:由题意作出所表示的区域如图阴影部分所示,作直线2x+y=1,因为直线2x+y=1与直线x=1的交点坐标为(1,-1),结合题意知直线y=a(x-3)过点(1,-1),代入得,所以.10.答案:C解析:∵x0是f(x)的极小值点,则y=f(x)的图像大致如下图所示,则在(-∞,x0)上不单调,故C不正确.11.答案:C解析:设点M的坐标为(x0,y0),由抛物线的定义,得|MF|=x0+=5,则x0=5-.又点F的坐标为,所以以MF为直径的圆的方程为(x-x0)+(y-y0)y=0.将x=0,y=2代入得px0+8-4y0=0,即-4y0+8=0,所以y0=4. 由=2px0,得,解之得p=2,或p=8.所以C的方程为y2=4x或y2=16x.故选C.12.答案:B第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答。第22题~第24题为选考题,考生根据要求做答。二、填空题:本大题共4小题,每小题5分.13.答案:2解析:以AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,如图所示,则点A的坐标为(0,0),点B的坐标为(2,0),点D的坐标为(0,2),点E的坐标为(1,2),则=(1,2),=(-2,2),所以.14.答案:8解析:从1,2,…,n中任取两个不同的数共有种取法,两数之和为5的有(1,4),(2,3)2种,所以,即,解得n=8.15.答案:解析:由,得tanθ=,即sinθ=cosθ.将其代入sin2θ+cos2θ=1,得.因为θ为第二象限角,所以cosθ=,sinθ=,sinθ+cosθ=.16.答案:-49解析:设数列{an}的首项为a1,公差为d,则S10==10a1+45d=0,①S15==15a1+105d=25.②联立①②,得a1=-3,,所以Sn=.令f(n)=nSn,则,.令f′(n)=0,得n=0或.当时,f′(n)>0,时,f′(n)<0,所以当时,f(n)取最小值,而n∈N+,则f(6)=-48,f(7)=-49,所以当n=7时,f(n)取最小值-49.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.解:(1)由已知及正弦定理得sinA=sinBcosC+sinCsinB.①又A=π-(B+C),故sinA=sin(B+C)=sinBcosC+cosBsinC.②由①,②和C∈(0,π)得sinB=cosB,又B∈(0,π),所以.(2)△ABC的面积.由已知及余弦定理得4=a2+c2-.又a2+c2≥2ac,故,当且仅当a=c时,等号成立.因此△ABC面积的最大值为.18.解:(1)连结AC1交A1C于点F,则F为AC1中点.又D是AB中点,连结DF,则BC1∥DF.因为DF⊂平面A1CD,BC1平面A1CD,所以BC1∥平面A1CD.(2)由AC=CB=得,AC⊥BC.以C为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系C-xyz.设CA=2,则D(1,1,0),E(0,2,1),A1(2,0,2),=(1,1,0),=(0,2,1),=(2,0,2).设n=(x1,y1,z1)是平面A1CD的法向量,则即可取n=(1,-1,-1).同理,设m是平面A1CE的法向量,则可取m=(2,1,-2).从而cos〈n,m〉=,故sin〈n,m〉=.即二面角D-A1C-E的正弦值为.19.解:(1)当X∈[100,130)时,T=500X-300(130-X)=800X-39000,当X∈[130,150]时,T=500×130=65000. 所以(2)由(1)知利润T不少于57000元当且仅当120≤X≤150.由直方图知需求量X∈[120,150]的频率为0.7,所以下一个销售季度内的利润T不少于57000元的概率的估计值为0.7.(3)依题意可得T的分布列为T45000530006100065000P0.10.20.30.4所以ET=45000×0.1+53000×0.2+61000×0.3+65000×0.4=59400.20.解:(1)设A(x1,y1),B(x2,y2),P(x0,y0),则,,,由此可得.因为x1+x2=2x0,y1+y2=2y0,,所以a2=2b2.又由题意知,M的右焦点为(,0),故a2-b2=3.因此a2=6,b2=3.所以M的方程为.(2)由解得或因此|AB|=.由题意可设直线CD的方程为y=,设C(x3,y3),D(x4,y4).由得3x2+4nx+2n2-6=0.于是x3,4=.因为直线CD的斜率为1, 所以|CD|=.由已知,四边形ACBD的面积.当n=0时,S取得最大值,最大值为.所以四边形ACBD面积的最大值为.21.解:(1)f′(x)=.由x=0是f(x)的极值点得f′(0)=0,所以m=1.于是f(x)=ex-ln(x+1),定义域为(-1,+∞),f′(x)=.函数f′(x)=在(-1,+∞)单调递增,且f′(0)=0.因此当x∈(-1,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0.所以f(x)在(-1,0)单调递减,在(0,+∞)单调递增.(2)当m≤2,x∈(-m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时,f(x)>0.当m=2时,函数f′(x)=在(-2,+∞)单调递增.又f′(-1)<0,f′(0)>0,故f′(x)=0在(-2,+∞)有唯一实根x0,且x0∈(-1,0).当x∈(-2,x0)时,f′(x)<0;当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值.由f′(x0)=0得=,ln(x0+2)=-x0,故f(x)≥f(x0)=+x0=>0.综上,当m≤2时,f(x)>0.请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一题计分,做答时请写清题号.22.解:(1)因为CD为△ABC外接圆的切线,所以∠DCB=∠A,由题设知,故△CDB∽△AEF,所以∠DBC=∠EFA.因为B,E,F,C四点共圆,所以∠CFE=∠DBC,故∠EFA=∠CFE=90°.所以∠CBA=90°,因此CA是△ABC外接圆的直径.(2)连结CE,因为∠CBE=90°,所以过B,E,F,C四点的圆的直径为CE,由DB=BE,有CE=DC,又BC2=DB·BA=2DB2,所以CA2=4DB2+BC2=6DB2. 而DC2=DB·DA=3DB2,故过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值为.23.解:(1)依题意有P(2cosα,2sinα),Q(2cos2α,2sin2α),因此M(cosα+cos2α,sinα+sin2α).M的轨迹的参数方程为(α为参数,0<α<2π).(2)M点到坐标原点的距离(0<α<2π).当α=π时,d=0,故M的轨迹过坐标原点.24.解:(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,得a2+b2+c2≥ab+bc+ca.由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1.所以3(ab+bc+ca)≤1,即ab+bc+ca≤.(2)因为,,,故≥2(a+b+c),即≥a+b+c.所以≥1. 2014年普通高等学校招生全国统一考试理科(新课标全国Ⅱ卷)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,学科网只有一项是符合题目要求的.1.设集合M={0,1,2},N=,则=()DA.{1}B.{2}C.{0,1}D.{1,2}2.设复数,在复平面内的对应点关于虚轴对称,,则()AA.-5B.5C.-4+iD.-4-i3.设向量a,b满足|a+b|=,|a-b|=,则ab=()AA.1B.2C.3D.54.钝角三角形ABC的面积是,AB=1,BC=,则AC=()BA.5B.C.2D.15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()AA.0.8B.0.75C.0.6D.0.456.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.C是否7.执行右图程序框图,如果输入的x,t均为2,则输出的S=()DA.4B.5C.6D.78.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()DA.0B.1C.2D.39.设x,y满足约束条件,则的最大值为()BA.10B.8C.3D.210.设F为抛物线C:的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()D A.B.C.D.11.直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成的角的余弦值为()CA.B.C.D.12.设函数.若存在的极值点满足,则m的取值范围是()CA.B.C.D.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,学科网每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答.二.填空题13.的展开式中,的系数为15,则a=________.(用数字填写答案)14.函数的最大值为_________.115.已知偶函数在单调递减,.若,则的取值范围是____.(-1,3)16.设点M(,1),若在圆O:上存在点N,使得∠OMN=45°,则的取值范围是____.[-1,1]三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分18.已知数列满足=1,.(Ⅰ)证明是等比数列,并求的通项公式;(Ⅱ)证明:. 18.(本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积.19.(本小题满分12分)某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:年份2007200820092010201120122013年份代号t1234567人均纯收入y2.93.33.64.44.85.25.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:, 20.(本小题满分12分)设,分别是椭圆的左右焦点,M是C上一点且与x轴垂直,直线与C的另一个交点为N.(Ⅰ)若直线MN的斜率为,求C的离心率;(Ⅱ)若直线MN在y轴上的截距为2,且,求a,b.21.(本小题满分12分)已知函数=(Ⅰ)讨论的单调性;(Ⅱ)设,当时,,求的最大值;(Ⅲ)已知,估计ln2的近似值(精确到0.001) 22.(本小题满分10)选修4—1:几何证明选讲如图,P是O外一点,PA是切线,A为切点,割线PBC与O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交O于点E.证明:(Ⅰ)BE=EC;(Ⅱ)ADDE=223.(本小题满分10)选修4-4:坐标系与参数方程在直角坐标系xoy中,以坐标原点为极点,x轴为极轴建立极坐标系,半圆C的极坐标方程为,.(Ⅰ)求C的参数方程;(Ⅱ)设点D在C上,C在D处的切线与直线垂直,根据(Ⅰ)中你得到的参数方程,确定D的坐标.24.(本小题满分10)选修4-5:不等式选讲设函数=(Ⅰ)证明:2;(Ⅱ)若,求的取值范围. 2016年全国高考理科数学试题全国卷2第Ⅰ卷一.选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知在复平面内对应的点在第四象限,则实数m的取值范围是(A)(B)(C)(D)(2)已知集合,,则()(A)(B)(C)(D)(3)已知向量,且,则m=()(A)-8(B)-6(C)6(D)8(4)圆的圆心到直线的距离为1,则a=()(A)(B)(C)(D)2(5)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()(A)24(B)18(C)12(D)9(6)下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()(A)(B)(C)(D)(7)若将函数的图像向左平移个单位长度,则平移后图象的对称轴为() (A)(B)(C)(D)(8)中国古代有计算多项式值的秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若输入的,依次输入的为2,2,5,则输出的()(A)7(B)12(C)17(D)34(9)若,则()(A)(B)(C)(D)(10)从区间随机抽取个数,,…,,,,…,,构成n个数对,,…,,其中两数的平方和小于1的数对共有个,则用随机模拟的方法得到的圆周率的近似值为(A)(B)(C)(D)(11)已知是双曲线的左,右焦点,点在上,与轴垂直,,则E的离心率为()(A)(B)(C)(D)2(12)已知函数满足,若函数与图像的交点为则() (A)0(B)(C)(D)第Ⅱ卷二、填空题:本大题共4小题,每小题5分(13)的内角的对边分别为,若,,,则.(14)是两个平面,是两条直线,有下列四个命题:(1)如果,那么.[](2)如果,那么.(3)如果,那么.(4)如果,那么与所成的角和与所成的角相等.其中正确的命题有..(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.(16)若直线是曲线的切线,也是曲线的切线,则.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(本题满分12分)为等差数列的前n项和,且记,其中表示不超过的最大整数,如.(Ⅰ)求;(Ⅱ)求数列的前1000项和.18.(本题满分12分)某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数012345保费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:[]一年内出险次数012[]345概率0.300.150.200.200.100.05 (Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(Ⅲ)求续保人本年度的平均保费与基本保费的比值.19.(本小题满分12分)如图,菱形的对角线与交于点,,点分别在上,,交于点.将沿折到位置,.(Ⅰ)证明:平面;(Ⅱ)求二面角的正弦值.20.(本小题满分12分)已知椭圆的焦点在轴上,是的左顶点,斜率为的直线交于两点,点在上,.(Ⅰ)当时,求的面积;(Ⅱ)当时,求的取值范围. (21)(本小题满分12分)(Ⅰ)讨论函数的单调性,并证明当时,;(Ⅱ)证明:当时,函数有最小值.设的最小值为,求函数的值域.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:几何证明选讲如图,在正方形中,分别在边上(不与端点重合),且,过点作,垂足为.(Ⅰ)证明:四点共圆;(Ⅱ)若,为的中点,求四边形的面积.(23)(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系中,圆的方程为.(Ⅰ)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程; (Ⅱ)直线的参数方程是(为参数),与交于两点,,求的斜率.(24)(本小题满分10分)选修4—5:不等式选讲已知函数,为不等式的解集.(Ⅰ)求;(Ⅱ)证明:当时,.2016年全国高考理科数学试题全国卷2参考答案(1)【解析】A∴,,∴,故选A.(2)【解析】C, ∴,∴,故选C.(3)【解析】D,∵,∴解得,故选D.(4)【解析】A圆化为标准方程为:,故圆心为,,解得,故选A.(5)【解析】B有种走法,有种走法,由乘法原理知,共种走法故选B.【解析二】:由题意,小明从街道的E处出发到F处最短有条路,再从F处到G处最短共有条路,则小明到老年公寓可以选择的最短路径条数为条,故选B.(6)【解析】C几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为,周长为,圆锥母线长为,圆柱高为.由图得,,由勾股定理得:,,故选C.(7)【解析】B由题意,将函数的图像向左平移个单位得,则平移后函数的对称轴为,即,故选B.(8)【解析】C第一次运算:,第二次运算:,第三次运算:, 故选C.(9)【解析】D∵,,故选D.解法二:对展开后直接平方解法三:换元法(10)【解析】C由题意得:在如图所示方格中,而平方和小于1的点均在如图所示的阴影中由几何概型概率计算公式知,∴,故选C.(11)【解析】A离心率,由正弦定理得.故选A.(12)【解析】B由得关于对称,而也关于对称,∴对于每一组对称点,∴,故选B.13.【解析】∵,, ,,,由正弦定理得:解得.(14)【解析】②③④对于①,,则的位置关系无法确定,故错误;对于②,因为,所以过直线作平面与平面相交于直线,则,因为,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,故正确的有②③④.(15)【解析】由题意得:丙不拿(2,3),若丙(1,2),则乙(2,3),甲(1,3)满足,若丙(1,3),则乙(2,3),甲(1,2)不满足,故甲(1,3),(16)【解析】的切线为:(设切点横坐标为)的切线为:∴解得∴.17.【解析】⑴设的公差为,,∴,∴,∴.∴,,.⑵记的前项和为,则.当时,;当时,; 当时,;当时,.∴.18.⑴设续保人本年度的保费高于基本保费为事件,.⑵设续保人保费比基本保费高出为事件,.⑶解:设本年度所交保费为随机变量.平均保费,∴平均保费与基本保费比值为.19.【解析】⑴证明:∵,∴,∴.∵四边形为菱形,∴,∴,∴,∴.∵,∴;又,,∴,∴,∴, ∴,∴.又∵,∴面.⑵建立如图坐标系.,,,,,,,设面法向量,由得,取,∴.同理可得面的法向量,∴,∴20.【解析】⑴当时,椭圆E的方程为,A点坐标为,则直线AM的方程为.联立并整理得, 解得或,则因为,所以因为,,所以,整理得,无实根,所以.所以的面积为.⑵直线AM的方程为,联立并整理得,解得或,所以所以因为所以,整理得,.因为椭圆E的焦点在x轴,所以,即,整理得解得.(21)【解析】⑴证明: ∵当时,∴在上单调递增∴时,∴⑵由(1)知,当时,的值域为,只有一解.使得,当时,单调减;当时,单调增记,在时,,∴单调递增∴.(22)【解析】(Ⅰ)证明:∵∴∴∵,∴∴∴ ∴∴.∴B,C,G,F四点共圆.(Ⅱ)∵E为AD中点,,∴,∴在中,,连接,,∴.(23)解:⑴整理圆的方程得,由可知圆的极坐标方程为.⑵记直线的斜率为,则直线的方程为,由垂径定理及点到直线距离公式知:,即,整理得,则.(24)【解析】解:⑴当时,,若;当时,恒成立;当时,,若,.综上可得,.⑵当时,有,即,则,则,即,证毕. 2017年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。考试结束后,将本试卷和答题卡一并交回。注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘 贴在条形码区域内。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A.B.C.D.2.设集合,,若,则A.B..C.D.3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A.1盏B.3盏C.5盏D.9盏4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.B.C.D.5.设满足约束条件则的最小值是A.B.C.D.6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有 A.12种B.18种C.24种D.36种理科数学试题第1页(共4页)7.甲、乙、丙、丁四位同学一起去向老师询问成语竞猜的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩8.执行右面的程序框图,如果输入的,则输出的A.2B.3C.4D.59.若双曲线的一条渐近线被圆所截得的弦长为,则的离心率为A.B.C.D.10.已知直三棱柱中,,,,则异面直线与所成角的余弦值为A.B.C.D.11.若是函数的极值点,则的极小值为 A.B.C.D.12.已知是边长为的等边三角形,为平面内一点,则的最小值是A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.一批产品的二等品率为,从这批产品中每次随机取一件,有放回地抽取次,表示抽到二等品件数,则.14.函数的最大值是.15.等差数列的前项和为,,,则.16.已知是抛物线的焦点,是上一点,的延长线交轴于点.若为的中点,则.理科数学试题第2页(共4页)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22/23题为选考题,考生根据要求作答。(一)必考题:共60分。17.(12分)的内角的对边分别为,已知.(1)求;(2)若,的面积为,求.18.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下: (1)设两种养殖方法的箱产量相互独立,记表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;箱产量<50kg箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:.理科数学试题第3页(共4页)19.(12分)如图,四棱锥中,侧面为等边三角形且垂直于地面,,,是的中点.(1)证明:直线;(2)点在棱上,且直线与底面所成角为,求二面角的余弦值.20.(12分)设为坐标原点,动点在椭圆上,过作轴的垂线,垂足为,点满足.(1)求点的轨迹方程;(2)设点在直线上,且.证明:过点且垂直于的直线过的左焦点. 21.(12分)已知函数,且.(1)求;(2)证明:存在唯一的极大值点,且.(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做则按所做的第一题计分。22.[选修:坐标系与参数方程](10分)在直角坐标系中,以坐标原点为极点,正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)为曲线上的动点,点在线段上,且满足,求点的轨迹的直角坐标方程;(2)设点的极坐标为,点在曲线上,求面积的最大值.23.[选修:不等式选讲](10分)已知.证明:(1);(2).理科数学试题第4页(共4页)2017年普通高等学校招生全国统一考试理科数学参考答案一、选择题1.D2.C3.B4.B5.A6.D7.D8.B9.A10.C11.A12.B二、填空题 13.1.9614.115.16.6三、解答题17.(1)由得,即,,得,则有.(2)由(1)可知,则,得,又,则.18.(1)旧养殖法箱产量低于50kg的频率为,新养殖法箱产量不低于50kg的频率为,而两种箱产量相互独立,则.(2)由频率分布直方图可得列联表箱产量<50kg箱产量≥50kg旧养殖法6238新养殖法3466则,所以有99%的把握认为箱产量与养殖方法有关.(3)新养殖法箱产量低于50kg的面积为,产量低于55kg的面积为,所以新养殖法箱产量的中位数估计值为(kg).19.(1)取中点,连结.因为为中点,则.而由题可知,则,即四边形为平行四边形,所以.又,故 .(2)因为,则以为坐标原点,所在直线分别为轴建立空间直角坐标系,如图所示.取,设则得,,则,,可得点,所以.取底面的法向量为,则,解得,则.因为,设面的法向量为,由得,取得,则.故二面角的余弦值为.20.(1)设,则,将点代入中得,所以点的轨迹方程为.(2)由题可知,设,则,.由得,由(1)有,则有,所以,即过点且垂直于的直线过的左焦点.21.(1)的定义域为,则等价于.设,则.由题可知,则由解得,所以为上的增函数,为上的减函数.则有,解得.(2)由(1)可知,则. 设,则.由解得,所以为上的增函数,为上的减函数.又因为,则在上存在唯一零点使得,即,且为,上的增函数,为上的减函数,则极大值为.而,所以.综上,.22.(1)设极坐标为,极坐标为.则,.由得的极坐标方程为.所以的直角坐标方程为.(2)设极标为,由题可知,则有.即当时,面积的最大值为.23.(1)(2)因为,所以,解得.