- 844.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
试卷类型:A
2011年普通高等学校招生全国统一考试(广东卷)
数学(理科)
本试题共4页,21小题,满分150分,考试用时120分钟。
注意事项:
1、 答卷前,考生务必用黑色自己的钢笔或签字笔将自己的姓名、和考生号、试室号、座位号,填写在答题卡上。用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。
2、 选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑。如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。
3、 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要求做大的答案无效。
4、 作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再做答。漏涂、错涂、多涂的,答案无效。
5、 考生必须保持答题卡得整洁。考试结束后,将试卷和答题卡一并交回。
参考公式:柱体的体积公式 V=Sh其中S为柱体的底面积,h为柱体的高
线性回归方程中系数计算公式
其中表示样本均值。
N是正整数,则…)
一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设复数满足,其中为虚数单位,则=
A. B. C. D.
2.已知集合 ∣为实数,且,为实数,且,则的元素个数为
A.0 B.1 C.2 D.3
3. 若向量a,b,c满足a∥b且a⊥b,则
A.4 B.3 C.2 D.0
4. 设函数和分别是R上的偶函数和奇函数,则下列结论恒成立的是
A.是偶函数 B.是奇函数
C.是偶函数 D.是奇函数
5. 在平面直角坐标系上的区域由不等式组给定。若为上的动点,点的坐标为,则的最大值为
A. B. C.4 D.3
6. 甲、乙两队进行排球决赛,现在的情形是甲队只要在赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为
A. B. C. D.
7. 如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为
A. B. C. D.
8.设S是整数集Z的非空子集,如果有,则称S关于数的乘法是封闭的. 若T,V是Z的两个不相交的非空子集,且有有,则下列结论恒成立的是
A. 中至少有一个关于乘法是封闭的
B. 中至多有一个关于乘法是封闭的
C. 中有且只有一个关于乘法是封闭的
D. 中每一个关于乘法都是封闭的
16. 填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
(一)必做题(9-13题)
9. 不等式的解集是 .
10. 的展开式中,的系数是 (用数字作答)
11. 等差数列前9项的和等于前4项的和. 若,则k=____________.
12. 函数在x=____________处取得极小值。
13. 某数学老师身高176cm,他爷爷、父亲和儿子的身高分别是173cm、170cm和182cm .因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为_____cm.
(二) 选做题(14 - 15题,考生只能从中选做一题)
14.(坐标系与参数方程选做题)已知两面线参数方程分别为 和,它们的交点坐标为___________.
15.(几何证明选讲选做题)如图4,过圆外一点分别作圆的切线
和割线交圆于,,且=7,是圆上一点使得=5,
∠=∠, 则= 。
三. 解答题。本大题共6小题,满分80分。解答需写出文字说明、证明过程和演算步骤。
(1) (本小题满分12分)
已知函数
(1) 求的值;
(2) 设求的值.
17. 为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽出取14件和5件,测量产品中的微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:
编号
1
2
3
4
5
x
169
178
166
175
180
y
75
80
77
70
81
(1) 已知甲厂生产的产品共有98件,求乙厂生产的产品数量;
(2) 当产品中的微量元素x,y满足x≥175,且y≥75时,该产品为优等品。用上述样本数据估计乙厂生产的优等品的数量;
(3) 从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列极其均值(即数学期望)。
18.(本小题满分13分)
如图5.在椎体P-ABCD中,ABCD是边长为1的棱形,
且∠DAB=60,,PB=2,
E,F分别是BC,PC的中点.
(1) 证明:AD 平面DEF;
(2) 求二面角P-AD-B的余弦值.
19.(本小题满分14分)
设圆C与两圆中的一个内切,另一个外切。
(1)求圆C的圆心轨迹L的方程;
(2)已知点M,且P为L上动点,求的最大值及此时点P的坐标.
20.(本小题共14分)
设b>0,数列满足a1=b,.
(1)求数列的通项公式;
(2)证明:对于一切正整数n,
21.(本小题满分14分)
在平面直角坐标系xOy上,给定抛物线L:.实数p,q满足,x1,x2是方程的两根,记。
(1)过点作L的切线教y轴于点B. 证明:对线段AB上任一点Q(p,q)有
(2)设M(a,b)是定点,其中a,b满足a2-4b>0,a≠0. 过M(a,b)作L的两条切线,切点分别为,与y轴分别交与F,F'。线段EF上异于两端点的点集记为X.证明:M(a,b) X;
(3)设D={ (x,y)|y≤x-1,y≥(x+1)2-}.当点(p,q)取遍D时,求的最小值 (记为)和最大值(记为).
2011年广东高考理科数学参考答案
一、选择题
题 号
1
2
3
4
5
6
7
8
答 案
B
C
D
A
C
D
B
A
二、填空题
9. ; 10. 84; 11. 10; 12. 2; 13. 185;
14. ; 15. ;
三、解答题
16.解:(1);
(2),,又,,
,,
又,,
.
17.解:(1)乙厂生产的产品总数为;
(2)样品中优等品的频率为,乙厂生产的优等品的数量为;
(3), ,的分布列为
0
1
2
P
AS
BS
CS
DS
F
G
P
AS
BS
CS
DS
F
E
均值.
18.解:(1) 取AD的中点G,又PA=PD,,
由题意知ΔABC是等边三角形,,
又PG, BG是平面PGB的两条相交直线,
,
,
,
(2) 由(1)知为二面角的平面角,
在中,;在中,;
在中,.
19.解:(1)两圆半径都为2,设圆C的半径为R,两圆心为、,
由题意得或,
,
可知圆心C的轨迹是以为焦点的双曲线,设方程为,则
,所以轨迹L的方程为.
(2)∵,仅当时,取"=",
由知直线,联立并整理得解得或,此时
所以最大值等于2,此时.
20.解(1)法一:,得,
设,则,
(ⅰ)当时,是以为首项,为公差的等差数列,
即,∴
(ⅱ)当时,设,则,
令,得,,
知是等比数列,,又,
,.
法二:(ⅰ)当时,是以为首项,为公差的等差数列,
即,∴
(ⅱ)当时,,,,
猜想,下面用数学归纳法证明:
①当时,猜想显然成立;
②假设当时,,则
,
所以当时,猜想成立,
由①②知,,.
(2)(ⅰ)当时, ,故时,命题成立;
(ⅱ)当时,,
,
,以上n个式子相加得
,
.故当时,命题成立;
综上(ⅰ)(ⅱ)知命题成立.
21.解:(1),
直线AB的方程为,即,
,方程的判别式,
两根或,
,,又,
,得,
.
(2)由知点在抛物线L的下方,
①当时,作图可知,若,则,得;
若,显然有点; .
②当时,点在第二象限,
作图可知,若,则,且;
若,显然有点;
.
根据曲线的对称性可知,当时,,
综上所述,(*);
由(1)知点M在直线EF上,方程的两根或,
同理点M在直线上,方程的两根或,
若,则不比、、小,
,又,
;又由(1)知,;
,综合(*)式,得证.
(3)联立,得交点,可知,
过点作抛物线L的切线,设切点为,则,
得,解得,
又,即,
,设,,
,又,;
,,
.