• 710.50 KB
  • 2021-05-13 发布

上海高考数学文科试题及答案

  • 8页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2016年高考上海数学试卷(文史类)‎ 考生注意:‎ ‎ 1.本试卷共4页,23道试题,满分150分.考试时间120分钟.‎ ‎2.本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.‎ ‎3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.‎ 一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.‎ ‎1.设,则不等式的解集为_______.‎ ‎2.设,其中为虚数单位,则的虚部等于______.‎ ‎3.已知平行直线,,则与的距离是_____.‎ ‎4.某次体检,5位同学的身高(单位:米)分别为1.72,1.78,1.80,1.69,1.76,则这组数据的中位数是______(米).‎ ‎5.若函数的最大值为5,则常数______.‎ ‎6.已知点(3,9)在函数的图像上,则的反函数=______.‎ ‎7.若满足 则的最大值为_______.‎ ‎8.方程在区间上的解为_____.‎ ‎9.在的二项展开式中,所有项的二项式系数之和为256,则常数项等于____.‎ ‎10.已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于____.‎ ‎11.某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为______.‎ ‎12.如图,已知点O(0,0),A(1.0),B(0,−1),P是曲线上一个动点,则的取值范围是 .‎ ‎13.设a>0,b>0. 若关于x,y的方程组无解,则的取值范围是 .‎ ‎14.无穷数列{an}由k个不同的数组成,Sn为{an}的前n项和.若对任意的,则k的最大值为 .‎ 二、选择题(本大题共4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.‎ ‎15.设,则“a>1”是“a2>1”的( )‎ ‎(A)充分非必要条件 (B)必要非充分条件 ‎(C)充要条件 (D)既非充分也非必要条件 ‎16.如图,在正方体ABCD−A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是( )‎ ‎(A)直线AA1 (B)直线A1B1 (C)直线A1D1 (D)直线B1C1‎ ‎17.设,.若对任意实数x都有,则满足条件的有序实数对(a,b)的对数为( )‎ ‎(A)1 (B)2 (C)3 (D)4‎ ‎ 18.设f(x)、g(x)、h(x)是定义域为的三个函数.对于命题:①若f(x)+g(x)、f(x)+ h(x)、g(x)+ h(x)均是增函数,则f(x)、g(x)、h(x)均是增函数;②若f(x)+g(x)、f(x)+ h(x)、g(x)+ h(x)均是以T为周期的函数,则f(x)、g(x)、h(x) 均是以T为周期的函数,下列判断正确的是( )‎ ‎(A)①和②均为真命题 (B) ①和②均为假命题 ‎(C)①为真命题,②为假命题 (D)①为假命题,②为真命题 三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.‎ ‎19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.‎ 将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图, 长为 ,长为,其中B1与C在平面AA1O1O的同侧.‎ ‎(1)求圆柱的体积与侧面积;‎ ‎(2)求异面直线O1B1与OC所成的角的大小.‎ ‎20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.‎ 有一块正方形菜地EFGH,EH所在直线是一条小河,收获的蔬菜可送到F点或河边运走.于是,菜地分为两个区域S1和S2,其中S1中的蔬菜运到河边较近,S2中的蔬菜运到F点较近,而菜地内S1和S2的分界线C上的点到河边与到F点的距离相等.现建立平面直角坐标系,其中原点O为EF的中点,点F的坐标为(1,0),如图 ‎(1)求菜地内的分界线C的方程;‎ ‎(2)菜农从蔬菜运量估计出S1面积是S2面积的两倍,由此得到S1面积的“经验值”为 .设M是C上纵坐标为1的点,请计算以EH为一边、另有一边过点M的矩形的面积,及五边形EOMGH的面积,并判别哪一个更接近于S1面积的“经验值”.‎ ‎21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.‎ 双曲线的左、右焦点分别为F1、F2,直线l过F2且与双曲线交于A、B两点.‎ ‎(1)若l的倾斜角为 ,是等边三角形,求双曲线的渐近线方程;‎ ‎(2)设 若l的斜率存在,且|AB|=4,求l的斜率.‎ ‎22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.‎ ‎ 对于无穷数列{}与{},记A={|=,},B={|=,},若同时满足条件:①{},{}均单调递增;②且,则称{}与{}是无穷互补数列.‎ ‎(1)若=,=,判断{}与{}是否为无穷互补数列,并说明理由;‎ ‎ (2)若=且{}与{}是无穷互补数列,求数列{}的前16项的和;‎ ‎ (3)若{}与{}是无穷互补数列,{}为等差数列且=36,求{}与{}得通项公式.‎ ‎23. (本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分 ‎ 已知R,函数=.‎ ‎ (1)当 时,解不等式>1;‎ ‎ (2)若关于的方程+=0的解集中恰有一个元素,求的值;‎ ‎ (3)设>0,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.‎ 参考答案 ‎1. ‎ ‎2. ‎ ‎3. ‎ ‎4. ‎ ‎5. ‎ ‎6. ‎ ‎7. ‎ ‎8. ‎ ‎9. ‎ ‎10. ‎ ‎11.‎ ‎12.‎ ‎13.‎ ‎14.‎ ‎15.A ‎16.D ‎17.B ‎18.D ‎19.解:(1)由题意可知,圆柱的母线长,底面半径.‎ 圆柱的体积,‎ 圆柱的侧面积.‎ ‎(2)设过点的母线与下底面交于点,则,‎ 所以或其补角为与所成的角.‎ 由长为,可知,‎ 由长为,可知,,‎ 所以异面直线与所成的角的大小为.‎ ‎20.解:(1)因为上的点到直线与到点的距离相等,所以是以为焦点、以 为准线的抛物线在正方形内的部分,其方程为().‎ ‎(2)依题意,点的坐标为.‎ 所求的矩形面积为,而所求的五边形面积为.‎ 矩形面积与“经验值”之差的绝对值为,而五边形面积与“经验值”之差 的绝对值为,所以五边形面积更接近于面积的“经验值”.‎ ‎21.解:(1)设.‎ 由题意,,,,‎ 因为是等边三角形,所以,‎ 即,解得.‎ 故双曲线的渐近线方程为.‎ ‎(2)由已知,.‎ 设,,直线.‎ 由,得.‎ 因为与双曲线交于两点,所以,且.‎ 由,,得,‎ 故,‎ 解得,故的斜率为.‎ ‎22.解:(1)因为,,所以,‎ 从而与不是无穷互补数列.‎ ‎(2)因为,所以.‎ 数列的前项的和为 ‎.‎ ‎(3)设的公差为,,则.‎ 由,得或.‎ 若,则,,与“与是无穷互补数列”矛盾;‎ 若,则,,.‎ 综上,,.‎ ‎23.解:(1)由,得,‎ 解得.‎ ‎(2)有且仅有一解,‎ 等价于有且仅有一解,等价于有且仅有一解.‎ 当时,,符合题意;‎ 当时,,.‎ 综上,或.‎ ‎(3)当时,,,‎ 所以在上单调递减.‎ 函数在区间上的最大值与最小值分别为,.‎ 即,对任意 成立.‎ 因为,所以函数在区间上单调递增,时,‎ 有最小值,由,得.‎ 故的取值范围为.‎