- 199.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
立体几何综合训练
1、证明平行垂直
1.如图,AB是圆O的直径,PA⊥圆O所在的平面,C是圆O上的点.
(1)求证:BC⊥平面PAC;
(2)若Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.
2.如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:
(Ⅰ)PA⊥底面ABCD;
(Ⅱ)BE∥平面PAD;
(Ⅲ)平面BEF⊥平面PCD.
3.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.
(Ⅰ)求证:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P﹣ABCD的体积.
4.如图,在四棱锥P﹣ABCD中,底面ABCD是矩形.已知.M是PD的中点.
(Ⅰ)证明PB∥平面MAC
(Ⅱ)证明平面PAB⊥平面ABCD
(Ⅲ)求四棱锥p﹣ABCD的体积.
2、求体积问题
5.如图,已知四棱锥P﹣ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1.
(Ⅰ)求证:AB∥平面PCD;
(Ⅱ)求证:BC⊥平面PAC;
(Ⅲ)若M是PC的中点,求三棱锥M﹣ACD的体积.
6.(2011•辽宁)如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,OA=AB=PD.
(Ⅰ)证明PQ⊥平面DCQ;
(Ⅱ)求棱锥Q﹣ABCD的体积与棱锥P﹣DCQ的体积的比值.
7.如图,四棱锥P﹣ABCD的底面ABCD是边长为2的菱形,∠BAD=60°,已知PB=PD=2,PA=.
(Ⅰ)证明:PC⊥BD
(Ⅱ)若E为PA的中点,求三棱锥P﹣BCE的体积.
8.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,.
(Ⅰ)设M是PC上的一点,证明:平面MBD⊥平面PAD;
(Ⅱ)求四棱锥P﹣ABCD的体积.
3、 三视图
9.已知某几何体的直观图与它的三视图,其中俯视图为正三角形,其它两个视图是矩形.已知D是这个几何体的棱A1C1上的中点.
(Ⅰ)求出该几何体的体积;
(Ⅱ)求证:直线BC1∥平面AB1D;
(Ⅲ)求证:直线B1D⊥平面AA1D.
10.(2010•广东模拟)已知四棱锥P﹣ABCD的三视图如图所示,其中主视图、侧视图是直角三角形,俯视图是有一条对角线的正方形.E是侧棱PC上的动点.
(1)求证:BD⊥AE;
(2)若E是PC的中点,且五点A,B,C,D,E在同一球面上,求该球的表面积.
11.(2010•深圳二模)一个三棱柱ABC﹣A1B1C1
直观图和三视图如图所示(主视图、俯视图都是矩形,左视图是直角三角形),设E、F分别为AA1和B1C1的中点.
(Ⅰ)求几何体ABC﹣A1B1C1的体积;
(Ⅱ)证明:A1F∥平面EBC1;
(Ⅲ)证明:平面EBC⊥平面EB1C1.
4、折叠问题
12.如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到如图2所示的三棱锥A﹣BCF,其中.
(1)证明:DE∥平面BCF;
(2)证明:CF⊥平面ABF;
(3)当时,求三棱锥F﹣DEG的体积VF﹣DEG.
5、动点问题
13.(2011•北京)如图,在四面体PABC中,PC
求证:DE∥平面BCP;
(Ⅱ)求证:四边形DEFG为矩形;
(Ⅲ)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.
相关文档
- 高考物理总复习 考查点17 电场考点2021-05-135页
- 2020高考化学二轮增分优选练 选择2021-05-137页
- 高考物理全真模拟试题附答案二2021-05-1310页
- 高三物理一轮复习专题15原子物理含2021-05-135页
- 2017高考化学计算题精选精编2021-05-1312页
- 2013年山东高考文综试题及答案2021-05-1314页
- 高考英语真题阅读理解试题及答案解2021-05-1333页
- 2017年度高考英语专题14(阅读理解)二2021-05-1356页
- 通用版高考化学微一轮复习碳硅及其2021-05-1310页
- 高考真题分类汇编及详细解析选修2021-05-1323页