- 633.00 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2011年普通高等学校招生全国统一考试(辽宁卷)
数学(供理科考生使用)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.
4.考试结束后,将本试卷和答题卡一并交回.
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.为正实数,为虚数单位,,则
A.2 B. C. D.1
2.已知M,N为集合I的非空真子集,且M,N不相等,若,则
A.M B.N C.I D.
3.已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,,则线段AB的中点到y轴的距离为
A. B.1 C. D.
4.△ABC的三个内角A,B,C所对的边分别为a,b,c,asinAsinB+bcos2A=,则
A. B. C. D.
5.从1,2,3,4,5中任取2各不同的数,事件A=“取到的2个数之和
为偶数”,事件B=“取到的2个数均为偶数”,则P(B︱A)=
A. B.
C. D.
6.执行右面的程序框图,如果输入的n是4,则输出的P是
A.8
B.5
C.3
D.2
7.设sin,则
A. B. C. D.
8.如图,四棱锥S—ABCD的底面为正方形,SD底面ABCD,
则下列结论中不正确的是
A.AC⊥SB
B.AB∥平面SCD
C.SA与平面SBD所成的角等于SC与平面SBD所成的角
D.AB与SC所成的角等于DC与SA所成的角
9.设函数,则满足的x的取值范围是
A.,2] B.[0,2] C.[1,+] D.[0,+]
10.若,,均为单位向量,且,,则的最大值为
A. B.1 C. D.2
11.函数的定义域为,,对任意,,则的解集为
A.(,1) B.(,+) C.(,) D.(,+)
12.已知球的直径SC=4,A,B是该球球面上的两点,AB=,,则棱锥S—ABC的体积为
A. B. C. D.1
第Ⅱ卷
本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答.
二、填空题:本大题共4小题,每小题5分.
13.已知点(2,3)在双曲线C:上,C的焦距为4,则它的离心率为 .
14.调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加____________万元.
15.一个正三棱柱的侧棱长和底面边长相等,体积为,它的三视图中的俯
视图如右图所示,左视图是一个矩形,则这个矩形的面积是 .
16.已知函数=Atan(x+)(),y=
的部分图像如下图,则 .
三、解答题:解答应写文字说明,证明过程或演算步骤.
17.(本小题满分12分)
已知等差数列{an}满足a2=0,a6+a8=-10
(I)求数列{an}的通项公式;
(II)求数列的前n项和.
18.(本小题满分12分)
如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=P D.
(I)证明:平面PQC⊥平面DCQ;
(II)求二面角Q—BP—C的余弦值.
19.(本小题满分12分)
某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种家和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.
(I)假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X,求X的分布列和数学期望;
(II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表:
品种甲
403
397
390
404
388
400
412
406
品种乙
419
403
412
418
408
423
400
413
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
附:样本数据的的样本方差,其中为样本平均数.
20.(本小题满分12分)
如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上,椭圆C2的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A,B,C,D.
(I)设,求与的比值;
(II)当e变化时,是否存在直线l,使得BO∥AN,并说明理由.
21.(本小题满分12分)
已知函数.
(I)讨论的单调性;
(II)设,证明:当时,;
(III)若函数的图像与x轴交于A,B两点,线段AB中点的横坐标为x0,证明:(x0)<0.
请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分.做答是用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑.
22.(本小题满分10分)选修4-1:几何证明选讲
如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.
(I)证明:CD//AB;
(II)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F
四点共圆.
23.(本小题满分10分)选修4-4:坐标系统与参数方程
在平面直角坐标系xOy中,曲线C1的参数方程为(为参数),曲线C2的参数方程为(,为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=与C1,C2各有一个交点.当=0时,这两个交点间的距离为2,当=时,这两个交点重合.
(I)分别说明C1,C2是什么曲线,并求出a与b的值;
(II)设当=时,l与C1,C2的交点分别为A1,B1,当=时,l与C1,C2的交点为A2,
B2,求四边形A1A2B2B1的面积.
24.(本小题满分10分)选修4-5:不等式选讲
已知函数=|x-2|x-5|.
(I)证明:≤≤3;
(II)求不等式≥x2x+15的解集.
参考答案
评分说明:
1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.
2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.
3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.
4.只给整数分数,选择题不给中间分.
一、选择题
1—5 BACDB 6—10 CADDB 11—12 BC
二、填空题
13.2
14.0.254
15.
16.
三、解答题
17.解:
(I)设等差数列的公差为d,由已知条件可得
解得
故数列的通项公式为 ………………5分
(II)设数列,即,
所以,当时,
所以
综上,数列 ………………12分
18.解:
如图,以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D—xyz.
(I)依题意有Q(1,1,0),C(0,0,1),P(0,2,0).
则
所以
即PQ⊥DQ,PQ⊥DC.
故PQ⊥平面DCQ.
又PQ平面PQC,所以平面PQC⊥平面DCQ. …………6分
(II)依题意有B(1,0,1),
设是平面PBC的法向量,则
因此可取
设m是平面PBQ的法向量,则
可取
故二面角Q—BP—C的余弦值为 ………………12分
19.解:
(I)X可能的取值为0,1,2,3,4,且
即X的分布列为
………………4分
X的数学期望为
………………6分
(II)品种甲的每公顷产量的样本平均数和样本方差分别为:
………………8分
品种乙的每公顷产量的样本平均数和样本方差分别为:
………………10分
由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙.
20.解:(I)因为C1,C2的离心率相同,故依题意可设
设直线,分别与C1,C2的方程联立,求得
………………4分
当表示A,B的纵坐标,可知
………………6分
(II)t=0时的l不符合题意.时,BO//AN当且仅当BO的斜率kBO与AN的斜率kAN相等,即
解得
因为
所以当时,不存在直线l,使得BO//AN;
当时,存在直线l使得BO//AN. ………………12分
21.解:
(I)
(i)若单调增加.
(ii)若
且当
所以单调增加,在单调减少. ………………4分
(II)设函数则
当.
故当, ………………8分
(III)由(I)可得,当的图像与x轴至多有一个交点,
故,从而的最大值为
不妨设
由(II)得
从而
由(I)知, ………………12分
22.解:
(I)因为EC=ED,所以∠EDC=∠ECD.
因为A,B,C,D四点在同一圆上,所以∠EDC=∠EBA.
故∠ECD=∠EBA,
所以CD//AB. …………5分
(II)由(I)知,AE=BE,因为EF=FG,故∠EFD=∠EGC
从而∠FED=∠GEC.
连结AF,BG,则△EFA≌△EGB,故∠FAE=∠GBE,
又CD//AB,∠EDC=∠ECD,所以∠FAB=∠GBA.
所以∠AFG+∠GBA=180°.
故A,B,G,F四点共圆 …………10分
23.解:
(I)C1是圆,C2是椭圆.
当时,射线l与C1,C2交点的直角坐标分别为(1,0),(a,0),因为这两点间的距离为2,所以a=3.
当时,射线l与C1,C2交点的直角坐标分别为(0,1),(0,b),因为这两点重合,所以b=1.
(II)C1,C2的普通方程分别为
当时,射线l与C1交点A1的横坐标为,与C2交点B1的横坐标为
当时,射线l与C1,C2的两个交点A2,B2分别与A1,B1关于x轴对称,因此,
四边形A1A2B2B1为梯形.
故四边形A1A2B2B1的面积为 …………10分
24.解:
(I)
当
所以 ………………5分
(II)由(I)可知,
当的解集为空集;
当;
当.
综上,不等式 …………10分