• 256.50 KB
  • 2021-05-13 发布

高考物理知识点总结机械能守恒定律与动能定理的区别

  • 3页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎ 机械能守恒定律 知识简析一、机械能 ‎1.由物体间的相互作用和物体间的相对位置决定的能叫做势能.如重力势能、弹性势能、分子势能、电势能等.‎ ‎(1)物体由于受到重力作用而具有重力势能,表达式为 EP=一mgh.式中h是物体到零重力势能面的高度.‎ ‎(2)重力势能是物体与地球系统共有的.只有在零势能参考面确定之后,物体的重力势能才有确定的值,若物体在零势能参考面上方高 h处其重力势能为 EP=一mgh,若物体在零势能参考面下方低h处其重力势能为 EP=一mgh,“一”不表示方向,表示比零势能参考面的势能小,显然零势能参考面选择的不同,同一物体在同一位置的重力势能的多少也就不同,所以重力势能是相对的.通常在不明确指出的情况下,都是以地面为零势面的.但应特别注意的是,当物体的位置改变时,其重力势能的变化量与零势面如何选取无关.在实际问题中我们更会关心的是重力势能的变化量.‎ ‎(3)弹性势能,发生弹性形变的物体而具有的势能.高中阶段不要求具体利用公式计算弹性势能,但往往要根据功能关系利用其他形式能量的变化来求得弹性势能的变化或某位置的弹性势能.‎ ‎2.重力做功与重力势能的关系:重力做功等于重力势能的减少量WG=ΔEP减=EP初一EP末,克服重力做功等于重力势能的增加量W克=ΔEP增=EP末—EP初 ‎ 特别应注意:重力做功只能使重力势能与动能相互转化,不能引起物体机械能的变化.‎ ‎3、动能和势能(重力势能与弹性势能)统称为机械能.‎ 二、机械能守恒定律 ‎1、内容:在只有重力(和弹簧的弹力)做功的情况下,物体的动能和势能发生相互转化,但机械能的总量保持不变.‎ ‎2.机械能守恒的条件 ‎(1)做功角度:对某一物体,若只有重力(或弹簧弹力)做功,其他力不做功(或其他力做功的代数和为零),则该物体机械能守恒.‎ ‎(2)能转化角度:对某一系统,物体间只有动能和重力势能及弹性势能的相互转化,系统和外界没有发生机械能的传递,机械能也没有转变为其他形式的能,则系统机械能守恒.‎ ‎3.表达形式:EK1+Epl=Ek2+EP2‎ ‎(1)我们解题时往往选择的是与题目所述条件或所求结果相关的某两个状态或某几个状态建立方程式.此表达式中EP是相对的.建立方程时必须选择合适的零势能参考面.且每一状态的EP都应是对同一参考面而言的.‎ ‎(2)其他表达方式,ΔEP=一ΔEK,系统重力势能的增量等于系统动能的减少量.‎ ‎(3)ΔEa=一ΔEb,将系统分为a、b两部分,a部分机械能的增量等于另一部分b的机械能的减少量,‎ ‎ 三、判断机械能是否守恒 ‎ 首先应特别提醒注意的是,机械能守恒的条件绝不是合外力的功等于零,更不是合外力等于零,例如水平飞来的子弹打入静止在光滑水平面上的木块内的过程中,合外力的功及合外力都是零,但系统在克服内部阻力做功,将部分机械能转化为内能,因而机械能的总量在减少.‎ ‎(1)用做功来判断:分析物体或物体受力情况(包括内力和外力),明确各力做功的情况,若对物体或系统只有重力或弹力做功,没有其他力做功或其他力做功的代数和为零,则机械能守恒;‎ ‎(2)用能量转化来判定:若物体系中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系机械能守恒.‎ ‎(3)对一些绳子突然绷紧,物体间非弹性碰撞等除非题目的特别说明,机械能必定不守恒,完全非弹性碰撞过程机械能不守恒 说明:1.条件中的重力与弹力做功是指系统内重力弹力做功.对于某个物体系统包括外力和内力,只有重力或弹簧的弹力作功,其他力不做功或者其他力的功的代数和等于零,则该系统的机械能守恒,也就是说重力做功或弹力做功不能引起机械能与其他形式的能的转化,只能使系统内的动能和势能相互转化.如图5-50所示,光滑水平面上,A与L1、L2二弹簧相连,B与弹簧L2相连,外力向左推B使L1、L2 被压缩,当撤去外力后,A、L2、B这个系统机械能不守恒,因为LI对A的弹力是这个系统外的弹力,所以A、L2、B这个系统机械能不守恒.但对LI、A、L2、B这个系统机械能就守恒,因为此时L1对A的弹力做功属系统内部弹力做功.‎ ‎ 2.只有系统内部重力弹力做功,其它力都不做功,这里其它力合外力不为零,只要不做功,机械能仍守恒,即对于物体系统只有动能与势能的相互转化,而无机械能与其他形式转化(如系统无滑动摩擦和介质阻力,无电磁感应过程等等),则系统的机械能守恒,如图5-51所示光滑水平面上A与弹簧相连,当弹簧被压缩后撤去外力弹开的过程,B相对A没有发生相对滑动,A、B之间有相互作用的力,但对弹簧A、B物体组成的系统机械能守恒.‎ ‎3.当除了系统内重力弹力以外的力做了功,但做功的代数和为零,但系统的机械能不一定守恒.如图5—52所示,物体m在速度为v0时受到外力F作用,经时间t速度变为vt.(vt>v0)撤去外力,由于摩擦力的作用经时间t/速度大小又为v0,这一过程中外力做功代数和为零,但是物体m的机械能不守恒。‎ ‎ 四.机械能守恒定律与动量守恒定律的区别:‎ 动量守恒是矢量守恒,守恒条件是从力的角度,即不受外力或外力的和为零。机械能守恒是标量守恒,守恒条件是从功的角度,即除重力、弹力做功外其他力不做功。确定动量是否守恒应分析外力的和是否为零,确定系统机械能是否守恒应分析外力和内力做功,看是否只有重力、系统内弹力做功。还应注意,外力的和为零和外力不做功是两个不同的概念。所以,系统机械能守恒时动量不一定守恒;动量守恒时机械能也不一定守恒。‎ 判定系统动量,机械能是否守恒的关键是明确守恒条件和确定哪个过程, ‎ 五.机械能守恒定律与动能定理的区别 ‎ 机械能守恒定律反映的是物体初、末状态的机械能间关系,且守恒是有条件的,而动能定理揭示的是物体动能的变化跟引起这种变化的合外力的功间关系,既关心初末状态的动能,也必须认真分析对应这两个状态间经历的过程中做功情况.‎ 规律方法 ‎ ‎1、单个物体在变速运动中的机械能守恒问题 ‎2、系统机械能守恒问题 ‎ 点评(1)对绳索、链条这类的物体,由于在考查过程中常发生形变,其重心位置对物体来说,不是固定不变的,能否确定其重心的位里则是解决这类问题的关键,顺便指出的是均匀质量分布的规则物体常以重心的位置来确定物体的重力势能.此题初态的重心位置不在滑轮的顶点,由于滑轮很小,可视作对折来求重心,也可分段考虑求出各部分的重力势能后求出代数和作为总的重力势能.至于零势能参考面可任意选取,但以系统初末态重力势能便于表示为宜.‎ ‎(2)此题也可以用等效法求解,铁链脱离滑轮时重力势能减少,等效为一半铁链至另一半下端时重力势能的减少,然后利用ΔEP=-ΔEK求解,留给同学们思考.‎