春季高考数学知识点 95页

  • 7.95 MB
  • 2021-05-13 发布

春季高考数学知识点

  • 95页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎〖1.1〗集合 ‎【1.1.1】集合的含义与表示 ‎ (1)集合的概念 ‎ 集合中的元素具有确定性、互异性和无序性.‎ ‎(2)常用数集及其记法 表示自然数集,或表示正整数集,表示整数集,表示有理数集,表示实数集.‎ ‎(3)集合与元素间的关系 对象与集合的关系是,或者,两者必居其一.‎ ‎(4)集合的表示法 ‎ ①自然语言法:用文字叙述的形式来描述集合.‎ ‎②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.‎ ‎③描述法:{|具有的性质},其中为集合的代表元素.‎ ‎④图示法:用数轴或韦恩图来表示集合.‎ ‎(5)集合的分类 ‎①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集().‎ ‎【1.1.2】集合间的基本关系 ‎(6)子集、真子集、集合相等 名称 记号 意义 性质 示意图 子集 ‎(或 A中的任一元素都属于B ‎(1)AA ‎(2)‎ ‎(3)若且,则 ‎(4)若且,则 或 真子集 AB ‎(或BA)‎ ‎,且B中至少有一元素不属于A ‎(1)(A为非空子集)‎ ‎(2)若且,则 集合 相等 A中的任一元素都属于B,B中的任一元素都属于A ‎(1)AB ‎(2)BA ‎(7)已知集合有个元素,则它有个子集,它有个真子集,它有个非空子集,它有非空真子集.‎ ‎【1.1.3】集合的基本运算 ‎(8)交集、并集、补集 名称 记号 意义 性质 示意图 交集 且 ‎(1)‎ ‎(2)‎ ‎(3)‎ ‎ ‎ 并集 或 ‎(1)‎ ‎(2)‎ ‎(3)‎ ‎ ‎ 补集 ‎1 2 ‎ ‎【补充知识】含绝对值的不等式与一元二次不等式的解法 ‎(1)含绝对值的不等式的解法 不等式 解集 或 把看成一个整体,化成,型不等式来求解 ‎(2)一元二次不等式的解法 判别式 二次函数的图象 一元二次方程的根 ‎(其中 无实根 的解集 或 的解集 ‎〖1.2〗函数及其表示 ‎【1.2.1】函数的概念 ‎(1)函数的概念 ‎①设、是两个非空的数集,如果按照某种对应法则,对于集合中任何一个数 ‎,在集合中都有唯一确定的数和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的一个函数,记作.‎ ‎②函数的三要素:定义域、值域和对应法则.‎ ‎③只有定义域相同,且对应法则也相同的两个函数才是同一函数.‎ ‎(2)区间的概念及表示法 ‎①设是两个实数,且,满足的实数的集合叫做闭区间,记做;满足的实数的集合叫做开区间,记做;满足,或的实数的集合叫做半开半闭区间,分别记做,;满足的实数的集合分别记做.‎ 注意:对于集合与区间,前者可以大于或等于,而后者必须 ‎,(前者可以不成立,为空集;而后者必须成立).‎ ‎(3)求函数的定义域时,一般遵循以下原则:‎ ‎①是整式时,定义域是全体实数.‎ ‎②是分式函数时,定义域是使分母不为零的一切实数.‎ ‎③是偶次根式时,定义域是使被开方式为非负值时的实数的集合.‎ ‎④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.‎ ‎⑤中,.‎ ‎⑥零(负)指数幂的底数不能为零.‎ ‎⑦若是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.‎ ‎⑧对于求复合函数定义域问题,一般步骤是:若已知的定义域为,其复合函数的定义域应由不等式解出.‎ ‎⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.‎ ‎⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.‎ ‎(4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:‎ ‎ ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.‎ ‎②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.‎ ‎③判别式法:若函数可以化成一个系数含有的关于的二次方程,则在时,由于为实数,故必须有,从而确定函数的值域或最值.‎ ‎④不等式法:利用基本不等式确定函数的值域或最值.‎ ‎⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.‎ ‎⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.‎ ‎⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.‎ ‎⑧函数的单调性法.‎ ‎【1.2.2】函数的表示法 ‎(5)函数的表示方法 表示函数的方法,常用的有解析法、列表法、图象法三种.‎ ‎ 解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.‎ ‎(6)映射的概念 ‎①设、是两个集合,如果按照某种对应法则,对于集合中任何一个元素,在集合中都有唯一的元素和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的映射,记作.‎ ‎②给定一个集合到集合的映射,且.如果元素和元素对应,那么我们把元素叫做元素的象,元素叫做元素的原象.‎ ‎〖1.3〗函数的基本性质 ‎【1.3.1】单调性与最大(小)值 ‎(1)函数的单调性 ‎①定义及判定方法 函数的 性 质 定义 图象 判定方法 函数的 单调性 如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1< x2时,都有f(x1)f(x2),那么就说f(x)在这个区间上是减函数.‎ ‎(1)利用定义 ‎(2)利用已知函数的单调性 ‎(3)利用函数图象(在某个区间图 象下降为减)‎ ‎(4)利用复合函数 ‎②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.‎ ‎③对于复合函数,令,若为增,为增,则为增;若为减,为减,则为增;若为增,为减,则为减;若为减,为增,则为减.‎ y x o ‎(2)打“√”函数的图象与性质 分别在、上为增函数,分别在、上为减函数.‎ ‎(3)最大(小)值定义 ‎ ①一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;‎ ‎ (2)存在,使得.那么,我们称是函数的最大值,记作.‎ ‎②一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得.那么,我们称是函数的最小值,记作.‎ ‎【1.3.2】奇偶性 ‎(4)函数的奇偶性 ‎①定义及判定方法 函数的 性 质 定义 图象 判定方法 函数的 奇偶性 如果对于函数f(x)定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)叫做奇函数.‎ ‎(1)利用定义(要先判断定义域是否关于原点对称)‎ ‎(2)利用图象(图象关于原点对称)‎ 如果对于函数f(x)定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)叫做偶函数.‎ ‎(1)利用定义(要先判断定义域是否关于原点对称)‎ ‎(2)利用图象(图象关于y轴对称)‎ ‎②若函数为奇函数,且在处有定义,则.‎ ‎③奇函数在轴两侧相对称的区间增减性相同,偶函数在轴两侧相对称的区间增减性相反.‎ ‎④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.‎ ‎〖补充知识〗函数的图象 ‎(1)作图 利用描点法作图:‎ ‎①确定函数的定义域; ②化解函数解析式;‎ ‎③讨论函数的性质(奇偶性、单调性); ④画出函数的图象.‎ 利用基本函数图象的变换作图:‎ 要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.‎ ‎①平移变换 ‎②伸缩变换 ‎ ‎ ‎③对称变换 ‎ ‎ ‎ ‎ ‎(2)识图 对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.‎ ‎(3)用图 ‎ 函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.‎ 第二章 基本初等函数(Ⅰ)‎ ‎〖2.1〗指数函数 ‎【2.1.1】指数与指数幂的运算 ‎(1)根式的概念 ‎①如果,且,那么叫做的次方根.当是奇数时,的次方根用符号表示;当是偶数时,正数的正的次方根用符号表示,负的次方根用符号表示;0的次方根是0;负数没有次方根.‎ ‎②式子叫做根式,这里叫做根指数,叫做被开方数.当为奇数时,为任意实数;当为偶数时,.‎ ‎③根式的性质:;当为奇数时,;当为偶数时, .‎ ‎(2)分数指数幂的概念 ‎①正数的正分数指数幂的意义是:且.0的正分数指数幂等于0.‎ ‎②正数的负分数指数幂的意义是:且.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.‎ ‎(3)分数指数幂的运算性质 ‎① ②‎ ‎③‎ ‎【2.1.2】指数函数及其性质 ‎(4)指数函数 函数名称 指数函数 定义 ‎0‎ ‎1‎ ‎0‎ ‎1‎ 函数且叫做指数函数 图象 定义域 值域 过定点 图象过定点,即当时,.‎ 奇偶性 非奇非偶 单调性 在上是增函数 在上是减函数 函数值的 变化情况 变化对 图象的影响 在第一象限内,越大图象越高;在第二象限内,越大图象越低.‎ ‎〖2.2〗对数函数 ‎【2.2.1】对数与对数运算 (1) 对数的定义 ‎ ①若,则叫做以为底的对数,记作,其中叫做底数,叫做真数.‎ ‎②负数和零没有对数.‎ ‎③对数式与指数式的互化:.‎ ‎(2)几个重要的对数恒等式 ‎,,.‎ ‎(3)常用对数与自然对数 常用对数:,即;自然对数:,即(其中…).‎ ‎(4)对数的运算性质 如果,那么 ‎①加法: ②减法:‎ ‎③数乘: ④‎ ‎⑤ ⑥换底公式:‎ ‎【2.2.2】对数函数及其性质 ‎(5)对数函数 函数 名称 对数函数 定义 函数且叫做对数函数 图象 ‎0‎ ‎1‎ ‎0‎ ‎1‎ 定义域 值域 过定点 图象过定点,即当时,.‎ 奇偶性 非奇非偶 单调性 在上是增函数 在上是减函数 函数值的 变化情况 变化对 图象的影响 在第一象限内,越大图象越靠低;在第四象限内,越大图象越靠高.‎ ‎(6)反函数的概念 设函数的定义域为,值域为,从式子中解出,得式子.如果对于在中的任何一个值,通过式子,在 中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成.‎ ‎(7)反函数的求法 ‎①确定反函数的定义域,即原函数的值域;②从原函数式中反解出;‎ ‎③将改写成,并注明反函数的定义域.‎ ‎(8)反函数的性质 ‎ ①原函数与反函数的图象关于直线对称.‎ ‎②函数的定义域、值域分别是其反函数的值域、定义域.‎ ‎③若在原函数的图象上,则在反函数的图象上.‎ ‎④一般地,函数要有反函数则它必须为单调函数.‎ ‎〖2.3〗幂函数 ‎(1)幂函数的定义 ‎ 一般地,函数叫做幂函数,其中为自变量,是常数.‎ ‎(2)幂函数的图象 ‎(3)幂函数的性质 ‎①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限. ‎ ‎②过定点:所有的幂函数在都有定义,并且图象都通过点. ‎ ‎③单调性:如果,则幂函数的图象过原点,并且在上为增函数.如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴.‎ ‎④奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.当(其中互质,和),若为奇数为奇数时,则是奇函数,若为奇数为偶数时,则是偶函数,若为偶数为奇数时,则是非奇非偶函数.‎ ‎⑤图象特征:幂函数,当时,若,其图象在直线下方,若,其图象在直线上方,当时,若,其图象在直线上方,若,其图象在直线下方.‎ ‎〖补充知识〗二次函数 ‎(1)二次函数解析式的三种形式 ‎①一般式:②顶点式:③两根式:(2)求二次函数解析式的方法 ‎①已知三个点坐标时,宜用一般式.‎ ‎②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.‎ ‎③若已知抛物线与轴有两个交点,且横线坐标已知时,选用两根式求更方便.‎ ‎(3)二次函数图象的性质 ‎①二次函数的图象是一条抛物线,对称轴方程为顶点坐标是.‎ ‎②当时,抛物线开口向上,函数在上递减,在上递增,当时,;当时,抛物线开口向下,函数在上递增,在上递减,当时,.‎ ‎③二次函数当时,图象与轴有两个交点.‎ ‎(4)一元二次方程根的分布 一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.‎ ‎ 设一元二次方程的两实根为,且.令,从以下四个方面来分析此类问题:①开口方向: ②对称轴位置: ③判别式: ④端点函数值符号. ‎ ‎①k<x1≤x2 ‎ ‎ ‎ ‎②x1≤x2<k ‎ ‎ ‎ ‎③x1<k<x2 af(k)<0‎ ‎ ‎ ‎④k1<x1≤x2<k2 ‎ ‎ ‎ ‎⑤有且仅有一个根x1(或x2)满足k1<x1(或x2)<k2 f(k1)f(k2)0,并同时考虑f(k1)=0或f(k2)=0这两种情况是否也符合 ‎ ‎ ‎⑥k1<x1<k2≤p1<x2<p2 ‎ 此结论可直接由⑤推出. ‎ ‎(5)二次函数在闭区间上的最值 ‎ 设在区间上的最大值为,最小值为,令.‎ ‎(Ⅰ)当时(开口向上)‎ ‎①若,则 ②若,则 ③若,则 x y ‎0‎ > a O a b x ‎2‎ - = p q f(p)‎ f(q)‎ x y ‎0‎ > a O a b x ‎2‎ - = p q f(p)‎ f(q)‎ x y ‎0‎ > a O a b x ‎2‎ - = p q f(p)‎ f(q)‎ x y ‎0‎ > a O a b x ‎2‎ - = p q f(p)‎ f(q)‎ ‎①若,则 ②,则 x y ‎0‎ > a O a b x ‎2‎ - = p q f(p)‎ f(q)‎ ‎(Ⅱ)当时(开口向下)‎ ‎①若,则 ②若,则 ③若,则 x y ‎0‎ < a O a b x ‎2‎ - = p q f(p)‎ f(q)‎ x y ‎0‎ < a O a b x ‎2‎ - = p q f(p)‎ f(q)‎ x y ‎0‎ < a O a b x ‎2‎ - = p q f(p)‎ f(q)‎ ‎①若,则 ②,则.‎ x y ‎0‎ < a O a b x ‎2‎ - = p q f(p)‎ f(q)‎ x y ‎0‎ < a O a b x ‎2‎ - = p q f(p)‎ f(q)‎ 第三章 函数的应用 一、方程的根与函数的零点 ‎1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。‎ ‎2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:‎ 方程有实数根函数的图象与轴有交点函数有零点.‎ ‎3、函数零点的求法:‎ 求函数的零点:‎ (代数法)求方程的实数根;‎ (几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.‎ ‎4、二次函数的零点:‎ 二次函数.‎ ‎1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.‎ ‎2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.‎ ‎3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.‎ 第一章 空间几何体 ‎1.1柱、锥、台、球的结构特征 ‎(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。‎ 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。‎ 表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。‎ ‎(2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。‎ ‎(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台 几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 ‎(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。‎ ‎(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。‎ ‎(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。‎ ‎(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。‎ ‎1.2空间几何体的三视图和直观图 ‎1 三视图:‎ ‎ 正视图:从前往后 侧视图:从左往右 俯视图:从上往下 ‎2 画三视图的原则:‎ ‎ 长对齐、高对齐、宽相等 ‎3直观图:斜二测画法 ‎4斜二测画法的步骤:‎ ‎(1).平行于坐标轴的线依然平行于坐标轴;‎ ‎(2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;‎ ‎(3).画法要写好。‎ ‎5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图 ‎1.3 空间几何体的表面积与体积 ‎(一 )空间几何体的表面积 ‎1棱柱、棱锥的表面积: 各个面面积之和 ‎2 圆柱的表面积 3 圆锥的表面积 ‎4 圆台的表面积 5 球的表面积 ‎(二)空间几何体的体积 ‎1柱体的体积 2锥体的体积 ‎ ‎3台体的体积 4球体的体积 ‎ ‎ 第二章 直线与平面的位置关系 ‎2.1空间点、直线、平面之间的位置关系 ‎2.1.1‎ ‎1 平面含义:平面是无限延展的 ‎2 平面的画法及表示 ‎(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)‎ ‎(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。‎ ‎3 三个公理:‎ D C B A α ‎(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 L A ‎·‎ α A∈L ‎ B∈L => L α A∈α B∈α 公理1作用:判断直线是否在平面内 C ‎·‎ B ‎·‎ A ‎·‎ α ‎(2)公理2:过不在一条直线上的三点,有且只有一个平面。‎ 符号表示为:A、B、C三点不共线 => 有且只有一个平面α,‎ 使A∈α、B∈α、C∈α。‎ 公理2作用:确定一个平面的依据。‎ ‎(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。‎ P ‎·‎ α L β 符号表示为:P∈α∩β =>α∩β=L,且P∈L 公理3作用:判定两个平面是否相交的依据 ‎2.1.2 空间中直线与直线之间的位置关系 ‎1 空间的两条直线有如下三种关系:‎ 共面直线 ‎ 相交直线:同一平面内,有且只有一个公共点;‎ 平行直线:同一平面内,没有公共点;‎ 异面直线: 不同在任何一个平面内,没有公共点。‎ ‎2 公理4:平行于同一条直线的两条直线互相平行。‎ 符号表示为:设a、b、c是三条直线 ‎=>a∥c a∥b c∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。‎ 公理4作用:判断空间两条直线平行的依据。‎ ‎3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 ‎4 注意点:‎ ‎① a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为简便,点O一般取在两直线中的一条上;‎ ‎② 两条异面直线所成的角θ∈(0, );‎ ‎③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;‎ ‎④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;‎ ‎⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。‎ ‎2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系 ‎1、直线与平面有三种位置关系:‎ ‎(1)直线在平面内 —— 有无数个公共点 ‎(2)直线与平面相交 —— 有且只有一个公共点 ‎(3)直线在平面平行 —— 没有公共点 指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示 a α a∩α=A a∥α ‎2.2.直线、平面平行的判定及其性质 ‎2.2.1 直线与平面平行的判定 ‎1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。‎ 简记为:线线平行,则线面平行。‎ 符号表示:‎ a α b β => a∥α a∥b ‎2.2.2 平面与平面平行的判定 ‎1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。‎ 符号表示:‎ a β b β a∩b = P β∥α a∥α b∥α ‎2、判断两平面平行的方法有三种:‎ ‎(1)用定义;‎ ‎(2)判定定理;‎ ‎(3)垂直于同一条直线的两个平面平行。‎ ‎2.2.3 — 2.2.4直线与平面、平面与平面平行的性质 ‎1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。‎ 简记为:线面平行则线线平行。‎ 符号表示:‎ a∥α a β a∥b α∩β= b 作用:利用该定理可解决直线间的平行问题。‎ ‎2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。‎ 符号表示:‎ α∥β α∩γ= a a∥b ‎ β∩γ= b 作用:可以由平面与平面平行得出直线与直线平行 ‎2.3直线、平面垂直的判定及其性质 ‎2.3.1直线与平面垂直的判定 ‎1、定义 如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α 互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。如图,直线与平面垂直时,它们唯一公共点P叫做垂足。‎ ‎ L ‎ ‎ ‎ p α ‎ ‎2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。‎ 注意点: a)定理中的“两条相交直线”这一条件不可忽视;‎ b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。‎ ‎2.3.2平面与平面垂直的判定 ‎1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形 A ‎ ‎ 梭 l β B ‎   α ‎2、二面角的记法:二面角α-l-β或α-AB-β ‎3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。‎ ‎2.3.3 — 2.3.4直线与平面、平面与平面垂直的性质 ‎1、定理:垂直于同一个平面的两条直线平行。‎ ‎2性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。‎ 本章知识结构框图 平面(公理1、公理2、公理3、公理4)‎ 空间直线、平面的位置关系 直线与直线的位置关系 平面与平面的位置关系 直线与平面的位置关系 ‎ ‎ 第三章 直线与方程 ‎3.1直线的倾斜角和斜率 ‎3.1倾斜角和斜率 ‎1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°.‎ ‎2、 倾斜角α的取值范围: 0°≤α<180°. 当直线l与x轴垂直时, α= 90°.‎ ‎3、直线的斜率:‎ 一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα ‎⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;‎ ‎⑵当直线l与x轴垂直时, α= 90°, k 不存在.‎ 由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.‎ ‎4、 直线的斜率公式:‎ 给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:‎ ‎ 斜率公式: k=y2-y1/x2-x1 ‎ ‎3.1.2两条直线的平行与垂直 ‎1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即 注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2‎ ‎2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即 ‎3.2.1 直线的点斜式方程 ‎1、 直线的点斜式方程:直线经过点,且斜率为 ‎ ‎2、、直线的斜截式方程:已知直线的斜率为,且与轴的交点为 ‎ ‎3.2.2 直线的两点式方程 ‎1、直线的两点式方程:已知两点其中 y-y1/y-y2=x-x1/x-x2‎ ‎2、直线的截距式方程:已知直线与轴的交点为A,与轴的交点为B,其中 ‎3.2.3 直线的一般式方程 ‎1、直线的一般式方程:关于的二元一次方程(A,B不同时为0)‎ ‎2、各种直线方程之间的互化。‎ ‎3.3直线的交点坐标与距离公式 ‎3.3.1两直线的交点坐标 ‎1、给出例题:两直线交点坐标 L1 :3x+4y-2=0 L1:2x+y +2=0 ‎ 解:解方程组 ‎ 得 x=-2,y=2‎ 所以L1与L2的交点坐标为M(-2,2)‎ 3.3.2 两点间距离 两点间的距离公式 3.3.3 点到直线的距离公式 ‎1.点到直线距离公式:‎ 点到直线的距离为:‎ ‎2、两平行线间的距离公式:‎ 已知两条平行线直线和的一般式方程为:,‎ ‎,则与的距离为 第四章 圆与方程 ‎4.1.1 圆的标准方程 ‎1、圆的标准方程:‎ 圆心为A(a,b),半径为r的圆的方程 ‎2、点与圆的关系的判断方法:‎ ‎(1)>,点在圆外 (2)=,点在圆上 ‎(3)<,点在圆内 ‎4.1.2 圆的一般方程 ‎1、圆的一般方程: ‎ ‎2、圆的一般方程的特点:‎ ‎ (1)①x2和y2的系数相同,不等于0. ②没有xy这样的二次项.‎ ‎ (2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了.‎ ‎(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。‎ ‎4.2.1 圆与圆的位置关系 ‎1、用点到直线的距离来判断直线与圆的位置关系.‎ 设直线:,圆:,圆的半径为,圆心到直线的距离为,则判别直线与圆的位置关系的依据有以下几点:‎ ‎(1)当时,直线与圆相离;(2)当时,直线与圆相切;‎ ‎(3)当时,直线与圆相交;‎ ‎4.2.2 圆与圆的位置关系 两圆的位置关系.‎ 设两圆的连心线长为,则判别圆与圆的位置关系的依据有以下几点:‎ ‎(1)当时,圆与圆相离;(2)当时,圆与圆外切;‎ ‎(3)当时,圆与圆相交;‎ ‎(4)当时,圆与圆内切;(5)当时,圆与圆内含;‎ ‎4.2.3 直线与圆的方程的应用 ‎1、利用平面直角坐标系解决直线与圆的位置关系;‎ ‎2、过程与方法 用坐标法解决几何问题的步骤:‎ 第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;‎ 第二步:通过代数运算,解决代数问题;‎ 第三步:将代数运算结果“翻译”成几何结论.‎ ‎4.3.1空间直角坐标系 ‎1、点M对应着唯一确定的有序实数组,、、‎ 分别是P、Q、R在、、轴上的坐标 ‎2、有序实数组,对应着空间直角坐标系中的一点 ‎3、空间中任意点M的坐标都可以用有序实数组来表示,该数组叫做点M在此空间直角坐标系中的坐标,记M,叫做点M的横坐标,叫做点M的纵坐标,叫做点M的竖坐标。‎ ‎4.3.2空间两点间的距离公式 ‎1、空间中任意一点到点之间的距离公式 第二章 统计 ‎2.1.1简单随机抽样 ‎1.总体和样本 ‎ 在统计学中 , 把研究对象的全体叫做总体.‎ 把每个研究对象叫做个体.‎ 把总体中个体的总数叫做总体容量.‎ 为了研究总体的有关性质,一般从总体中随机抽取一部分:, , , ‎ 研究,我们称它为样本.其中个体的个数称为样本容量.‎ ‎2.简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随 ‎ 机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。‎ ‎3.简单随机抽样常用的方法:‎ ‎ (1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。‎ 在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。‎ ‎4.抽签法:‎ ‎ (1)给调查对象群体中的每一个对象编号;‎ ‎ (2)准备抽签的工具,实施抽签 ‎ (3)对样本中的每一个个体进行测量或调查 ‎ 例:请调查你所在的学校的学生做喜欢的体育活动情况。‎ ‎5.随机数表法:‎ ‎ 例:利用随机数表在所在的班级中抽取10位同学参加某项活动。‎ ‎2.1.2系统抽样 ‎1.系统抽样(等距抽样或机械抽样):‎ 把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。第一个样本采用简单随机抽样的办法抽取。‎ K(抽样距离)=N(总体规模)/n(样本规模)‎ 前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。‎ ‎2‎ ‎.系统抽样,即等距抽样是实际中最为常用的抽样方法之一。因为它对抽样框的要求较低,实施也比较简单。更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。‎ ‎2.1.3分层抽样 ‎1.分层抽样(类型抽样):‎ 先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。‎ 两种方法:‎ ‎1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。‎ ‎2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。‎ ‎2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。‎ 分层标准:‎ ‎(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。‎ ‎(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。‎ ‎(3)以那些有明显分层区分的变量作为分层变量。‎ ‎3.分层的比例问题:‎ ‎ (1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。‎ ‎ (2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。‎ ‎2.2.2用样本的数字特征估计总体的数字特征 ‎1、本均值:‎ ‎2、.样本标准差:‎ ‎3.用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。在随机抽样中,这种偏差是不可避免的。‎ 虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、均值和标准差,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。‎ ‎4.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变 ‎(2)如果把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的k倍 ‎(3)一组数据中的最大值和最小值对标准差的影响,区间的应用;‎ ‎“去掉一个最高分,去掉一个最低分”中的科学道理 ‎2.3.2两个变量的线性相关 ‎1、概念:‎ ‎ (1)回归直线方程(2)回归系数 ‎2.最小二乘法 ‎3.直线回归方程的应用 ‎ (1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系 ‎ (2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。‎ ‎ (3)利用回归方程进行统计控制规定Y值的变化,通过控制x的范围来实现统计控制的目标。如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO2的浓度。‎ ‎4.应用直线回归的注意事项 ‎ (1)做回归分析要有实际意义;‎ ‎ (2)回归分析前,最好先作出散点图;‎ ‎ (3)回归直线不要外延。‎ 第三章 概 率 ‎3.1.1 —3.1.2随机事件的概率及概率的意义 ‎1、基本概念:‎ ‎(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;‎ ‎(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;‎ ‎(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;‎ ‎(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;‎ ‎(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。‎ ‎(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率 ‎3.1.3 概率的基本性质 ‎1、基本概念:‎ ‎(1)事件的包含、并事件、交事件、相等事件 ‎(2)若A∩B为不可能事件,即A∩B=ф,那么称事件A与事件B互斥;‎ ‎(3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件;‎ ‎(4)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)‎ ‎2、概率的基本性质:‎ ‎1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;‎ ‎2)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);‎ ‎3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);‎ ‎4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A 与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。‎ ‎3.2.1 —3.2.2古典概型及随机数的产生 ‎1、(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。‎ ‎(2)古典概型的解题步骤;‎ ‎①求出总的基本事件数;‎ ‎②求出事件A所包含的基本事件数,然后利用公式P(A)=‎ ‎3.3.1—3.3.2几何概型及均匀随机数的产生 ‎1、基本概念:‎ ‎(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;‎ ‎(2)几何概型的概率公式:‎ P(A)=;‎ (1) 几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.‎ 第一章 三角函数 ‎2、角的顶点与原点重合,角的始边与轴的非负半轴重合,终边落在第几象限,则称为第几象限角.‎ 第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 终边在轴上的角的集合为 终边在轴上的角的集合为 终边在坐标轴上的角的集合为 ‎3、与角终边相同的角的集合为 ‎4、长度等于半径长的弧所对的圆心角叫做弧度.‎ ‎5、半径为的圆的圆心角所对弧的长为,则角的弧度数的绝对值是.‎ ‎6、弧度制与角度制的换算公式:,,.‎ Pv x ‎ y ‎ A ‎ O ‎ M ‎ T ‎ ‎7、若扇形的圆心角为,半径为,弧长为,周长为,面积为,则,,.‎ ‎8、设是一个任意大小的角,的终边上任意一点的坐标是,它与原点的距离是,则,,.‎ ‎9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,‎ 第三象限正切为正,第四象限余弦为正.‎ ‎10、三角函数线:,,.‎ ‎11、角三角函数的基本关系:;..(3) 倒数关系:‎ ‎12、函数的诱导公式:‎ ‎,,.‎ ‎,,.‎ ‎,,.‎ ‎,,.‎ 口诀:函数名称不变,符号看象限.‎ ‎,.,.‎ 口诀:正弦与余弦互换,符号看象限.‎ ‎13、①的图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.‎ ‎②数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数 的图象;再将函数的图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.‎ ‎14、函数的性质:‎ ①振幅:;②周期:;③频率:;④相位:;⑤初相:.‎ 函数,当时,取得最小值为 ;当时,取得最大值为,则,,.‎ ‎15、正弦函数、余弦函数和正切函数的图象与性质:‎ 函 数 性 质 ‎ ‎ ‎ y=cotx 图象 定义域 值域 最值 当时,;当 ‎ 时,.‎ 当时, ‎ ‎;当 时,.‎ 既无最大值也无最小值 既无最大值也无最小值 周期性 ‎ ‎ 奇偶性 奇函数 偶函数 奇函数 奇函数 单调性 在 上是增函数;在 在上是增函数;在 上是减函数.‎ 在 上是增函数.‎ 上是减函数.‎ 对称性 对称中心 对称轴 对称中心 对称轴 对称中心 无对称轴 对称中心 无对称轴 第二章 平面向量 ‎16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量.‎ 有向线段的三要素:起点、方向、长度. 零向量:长度为的向量.‎ 单位向量:长度等于个单位的向量.‎ 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.‎ 相等向量:长度相等且方向相同的向量.‎ ‎17、向量加法运算:‎ ⑴三角形法则的特点:首尾相连.‎ ⑵平行四边形法则的特点:共起点.‎ ⑶三角形不等式:.‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ⑷运算性质:①交换律:;‎ ②结合律:;③.‎ ⑸坐标运算:设,,则.‎ ‎18、向量减法运算:‎ ⑴三角形法则的特点:共起点,连终点,方向指向被减向量.‎ ⑵坐标运算:设,,则.‎ 设、两点的坐标分别为,,则.‎ ‎19、向量数乘运算:‎ ⑴实数与向量的积是一个向量的运算叫做向量的数乘,记作.‎ ①;‎ ②当时,的方向与的方向相同;当时,的方向与的方向相反;当时,.‎ ⑵运算律:①;②;③.‎ ⑶坐标运算:设,则.‎ ‎20、向量共线定理:向量与共线,当且仅当有唯一一个实数,使.‎ 设,,其中,则当且仅当时,向量、共线.‎ ‎21、平面向量基本定理:如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使.(不共线的向量、作为这一平面内所有向量的一组基底)‎ ‎22、分点坐标公式:设点是线段上的一点,、的坐标分别是,‎ ‎,当时,点的坐标是.(当 ‎23、平面向量的数量积:‎ ⑴.零向量与任一向量的数量积为.‎ ⑵性质:设和都是非零向量,则①.②当与同向时,;当与反向时,;或.③.‎ ⑶运算律:①;②;③.‎ ⑷坐标运算:设两个非零向量,,则.‎ 若,则,或. 设,,则.‎ 设、都是非零向量,,,是与的夹角,则.‎ 知识链接:空间向量 空间向量的许多知识可由平面向量的知识类比而得.下面对空间向量在立体几何中证明,求值的应用进行总结归纳.‎ ‎1、直线的方向向量和平面的法向量 ‎⑴.直线的方向向量:   若A、B是直线上的任意两点,则为直线的一个方向向量;与平行的任意非零向量也是直线的方向向量. ⑵.平面的法向量:   若向量所在直线垂直于平面,则称这个向量垂直于平面,记作,如果,那么向量叫做平面的法向量. ‎ ‎⑶.平面的法向量的求法(待定系数法):‎ ‎ ①建立适当的坐标系.‎ ‎②设平面的法向量为.‎ ‎③求出平面内两个不共线向量的坐标.‎ ‎④根据法向量定义建立方程组.‎ ‎⑤解方程组,取其中一组解,即得平面的法向量. ‎ ‎(如图)‎ ‎ ‎ 1、 用向量方法判定空间中的平行关系 ‎⑴线线平行 ‎ 设直线的方向向量分别是,则要证明∥,只需证明∥,即.‎ ‎ 即:两直线平行或重合两直线的方向向量共线。 ⑵线面平行 ‎①(法一)设直线的方向向量是,平面的法向量是,则要证明∥,只需证明,即.‎ 即:直线与平面平行直线的方向向量与该平面的法向量垂直且直线在平面外 ‎②(法二)要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可.‎ ‎⑶面面平行 若平面的法向量为,平面的法向量为,要证∥,只需证∥,即证.‎ 即:两平面平行或重合两平面的法向量共线。 3、用向量方法判定空间的垂直关系 ⑴线线垂直 设直线的方向向量分别是,则要证明,只需证明,即.‎ 即:两直线垂直两直线的方向向量垂直。 ⑵线面垂直 ‎①(法一)设直线的方向向量是,平面的法向量是,则要证明,只需证明∥,即.‎ ‎②(法二)设直线的方向向量是,平面内的两个相交向量分别为,若 即:直线与平面垂直直线的方向向量与平面的法向量共线直线的方向向量与平面内两条不共线直线的方向向量都垂直。‎ ‎⑶面面垂直 ‎ 若平面的法向量为,平面的法向量为,要证,只需证,即证.‎ ‎ 即:两平面垂直两平面的法向量垂直。 4、利用向量求空间角 ‎⑴求异面直线所成的角 已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,   则 ‎⑵求直线和平面所成的角 ‎ ①定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角 ‎②求法:设直线的方向向量为,平面的法向量为,直线与平面所成的角为,与的夹角为, 则为的余角或的补角 的余角.即有:‎ ‎⑶求二面角 ‎①定义:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面 二面角的平面角是指在二面角的棱上任取一点O,分别在两个半平面内作射线,则为二面角的平面角.‎ 如图:‎ O A B O A B l ‎②求法:设二面角的两个半平面的法向量分别为,再设的夹角为,二面角的平面角为,则二面角为的夹角或其补角 根据具体图形确定是锐角或是钝角:‎ ‎◆如果是锐角,则,‎ 即;‎ ◆ 如果是钝角,则,‎ ‎ 即.‎ ‎5、利用法向量求空间距离 ‎⑴点Q到直线距离 ‎ 若Q为直线外的一点,在直线上,为直线的方向向量,=,则点Q到直线距离为 ‎ ‎⑵点A到平面的距离 若点P为平面外一点,点M为平面内任一点,‎ 平面的法向量为,则P到平面的距离就等于在法向量方向上的投影的绝对值. ‎ 即 ‎ ‎ ‎⑶直线与平面之间的距离 ‎ 当一条直线和一个平面平行时,直线上的各点到平面的距离相等。由此可知,直线到平面的距离可转化为求直线上任一点到平面的距离,即转化为点面距离。‎ ‎ ‎ ‎ 即 ‎⑷两平行平面之间的距离 ‎ 利用两平行平面间的距离处处相等,可将两平行平面间的距离转化为求点面距离。‎ 即 ‎⑸异面直线间的距离 ‎ 设向量与两异面直线都垂直,则两异面直线间的距离就是在向量方向上投影的绝对值。‎ ‎ 即 ‎6、三垂线定理及其逆定理 ‎⑴三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直 推理模式: ‎ 概括为:垂直于射影就垂直于斜线.‎ ‎⑵三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直 推理模式:‎ 概括为:垂直于斜线就垂直于射影.‎ ‎7、三余弦定理 设AC是平面内的任一条直线,AD是的一条斜线AB在内的射影,且BD⊥AD,垂足为D.设AB与 (AD)所成的角为, AD与AC所成的角为, AB与AC所成的角为.则.‎ ‎8、 面积射影定理 已知平面内一个多边形的面积为,它在平面内的射影图形的面积为,平面与平面所成的二面角的大小为锐二面角,则 ‎ ‎ ‎9、一个结论 ‎ 长度为的线段在三条两两互相垂直的直线上的射影长分别为,夹角分别为,则有 .‎ ‎(立体几何中长方体对角线长的公式是其特例).‎ ‎‎ 第三章 三角恒等变换 ‎24、两角和与差的正弦、余弦和正切公式:‎ ⑴;⑵;‎ ⑶;⑷;‎ ⑸ ();‎ ⑹ ().‎ ‎25、二倍角的正弦、余弦和正切公式:‎ ⑴.‎ ⑵‎ 升幂公式 降幂公式,. ‎ ‎26、‎ ‎ .‎ ‎27、‎ ‎ ‎ ‎ (后两个不用判断符号,更加好用)‎ ‎28、合一变形把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 形式。,其中.‎ ‎29、三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算,化简的方法和技能.常用的数学思想方法技巧如下:‎ ‎(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如:‎ ‎①是的二倍;是的二倍;是的二倍;是的二倍; ‎ ‎②;问: ; ;‎ ‎③;④;‎ ‎⑤;等等 ‎(2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。如在三角函数中正余弦是基础,通常化切为弦,变异名为同名。‎ ‎(3)常数代换:在三角函数运算,求值,证明中,有时需要将常数转化为三角函数值,例如常数“1”的代换变形有:‎ ‎ ‎ ‎(4)幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式,一般采用降幂处理的方法。常用降幂公式有: ; 。降幂并非绝对,有时需要升幂,如对无理式常用升幂化为有理式,常用升幂公式有: ; ;‎ ‎(5)公式变形:三角公式是变换的依据,应熟练掌握三角公式的顺用,逆用及变形应用。‎ ‎ 如:; ;‎ ‎;;‎ ‎;;‎ ‎ ; ;‎ ‎ ;‎ ‎ = ;‎ ‎ = ;(其中 ;)‎ ‎ ; ;‎ ‎(6)三角函数式的化简运算通常从:“角、名、形、幂”四方面入手;‎ 基本规则是:见切化弦,异角化同角,复角化单角,异名化同名,高次化低次,无理化有理,特殊值与特殊角的三角函数互化。‎ 如: ;‎ ‎ 。 ‎ 第一章 解三角形 ‎(一)解三角形:‎ ‎1、正弦定理:在中,、、分别为角、、的对边,,则有 ‎(为的外接圆的半径)‎ ‎2、正弦定理的变形公式:①,,;‎ ②,,;③;‎ ‎3、三角形面积公式:.‎ ‎4、余弦定理:在中,有,推论:‎ ‎ 第二章 数列 ‎1、数列中与之间的关系:‎ 注意通项能否合并。‎ ‎2、等差数列:‎ ‎⑴定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即-=d ,(n≥2,n∈N),‎ 那么这个数列就叫做等差数列。‎ ‎⑵等差中项:若三数成等差数列 ‎⑶通项公式:‎ ‎ 或 ‎ ‎⑷前项和公式:‎ ‎⑸常用性质:‎ ‎①若,则;‎ ‎②下标为等差数列的项,仍组成等差数列;‎ ‎③数列(为常数)仍为等差数列;‎ ‎④若、是等差数列,则、 (、是非零常数)、、,…也成等差数列。‎ ‎⑤单调性:的公差为,则:‎ ⅰ)为递增数列;‎ ⅱ)为递减数列;‎ ⅲ)为常数列;‎ ‎⑥数列{}为等差数列(p,q是常数)‎ ‎⑦若等差数列的前项和,则、、… 是等差数列。‎ ‎3、等比数列 ‎⑴定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。‎ ‎⑵等比中项:若三数成等比数列(同号)。反之不一定成立。‎ ‎⑶通项公式:‎ ‎⑷前项和公式:‎ ‎⑸常用性质 ‎①若,则;‎ ‎②为等比数列,公比为(下标成等差数列,则对应的项成等比数列)‎ ‎③数列(为不等于零的常数)仍是公比为的等比数列;正项等比数列;则是公差为的等差数列;‎ ‎④若是等比数列,则 ‎ 是等比数列,公比依次是 ‎⑤单调性:‎ 为递增数列;‎ 为递减数列;‎ 为常数列;‎ 为摆动数列;‎ ‎⑥既是等差数列又是等比数列的数列是常数列。‎ ‎⑦若等比数列的前项和,则、、… 是等比数列.‎ ‎4、非等差、等比数列通项公式的求法 类型Ⅰ 观察法:已知数列前若干项,求该数列的通项时,一般对所给的项观察分析,寻找规律,从而根据规律写出此数列的一个通项。‎ 类型Ⅱ 公式法:若已知数列的前项和与的关系,求数列的通项可用公式 构造两式作差求解。‎ 用此公式时要注意结论有两种可能,一种是“一分为二”,即分段式;另一种是“合二为一”,即和合为一个表达,(要先分和两种情况分别进行运算,然后验证能否统一)。‎ 类型Ⅲ 累加法:‎ 形如型的递推数列(其中是关于的函数)可构造: ‎ 将上述个式子两边分别相加,可得:‎ ①若是关于的一次函数,累加后可转化为等差数列求和; ‎ ② 若是关于的指数函数,累加后可转化为等比数列求和;‎ ③若是关于的二次函数,累加后可分组求和; ‎ ④若是关于的分式函数,累加后可裂项求和. ‎ 类型Ⅳ 累乘法:‎ 形如型的递推数列(其中是关于的函数)可构造:‎ ‎ ‎ 将上述个式子两边分别相乘,可得:‎ 有时若不能直接用,可变形成这种形式,然后用这种方法求解。‎ 类型Ⅴ 构造数列法:‎ ㈠形如(其中均为常数且)型的递推式: ‎ ‎(1)若时,数列{}为等差数列; ‎ ‎(2)若时,数列{}为等比数列;‎ ‎(3)若且时,数列{}为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法有如下两种:‎ ‎ 法一:设,展开移项整理得,与题设比较系数(待定系数法)得,即构成以为首项,以为公比的等比数列.再利用等比数列的通项公式求出的通项整理可得 法二:由得两式相减并整理得即构成以为首项,以为公比的等比数列.求出的通项再转化为类型Ⅲ(累加法)便可求出 ㈡形如型的递推式:‎ ‎⑴当为一次函数类型(即等差数列)时:‎ 法一:设,通过待定系数法确定的值,转化成以为首项,以为公比的等比数列,再利用等比数列的通项公式求出的通项整理可得 法二:当的公差为时,由递推式得:,两式相减得:,令得:转化为类型Ⅴ㈠求出 ,再用类型Ⅲ(累加法)便可求出 ‎⑵当为指数函数类型(即等比数列)时:‎ 法一:设,通过待定系数法确定的值,转化成以为首项,以为公比的等比数列,再利用等比数列的通项公式求出的通项整理可得 法二:当的公比为时,由递推式得:——①,,两边同时乘以得——②,由①②两式相减得,即,在转化为类型Ⅴ㈠便可求出 法三:递推公式为(其中p,q均为常数)或(其中p,q, r均为常数)时,要先在原递推公式两边同时除以,得:,引入辅助数列(其中),得:再应用类型Ⅴ㈠的方法解决。‎ ‎⑶当为任意数列时,可用通法:‎ ‎ 在两边同时除以可得到,令,则,在转化为类型Ⅲ(累加法),求出之后得.‎ 类型Ⅵ 对数变换法:‎ 形如型的递推式:‎ 在原递推式两边取对数得,令得:,化归为型,求出之后得(注意:底数不一定要取10,可根据题意选择)。‎ 类型Ⅶ 倒数变换法:‎ 形如(为常数且)的递推式:两边同除于,转化为形式,化归为型求出的表达式,再求;‎ 还有形如的递推式,也可采用取倒数方法转化成形式,化归为型求出的表达式,再求.‎ 类型Ⅷ 形如型的递推式:‎ 用待定系数法,化为特殊数列的形式求解。方法为:设,比较系数得,可解得,于是是公比为的等比数列,这样就化归为型。‎ 总之,求数列通项公式可根据数列特点采用以上不同方法求解,对不能转化为以上方法求解的数列,可用归纳、猜想、证明方法求出数列通项公式 ‎5、非等差、等比数列前项和公式的求法 ‎⑴错位相减法 ‎①若数列为等差数列,数列为等比数列,则数列的求和就要采用此法.‎ ‎②将数列的每一项分别乘以的公比,然后在错位相减,进而可得到数列的前项和.‎ 此法是在推导等比数列的前项和公式时所用的方法.‎ ‎⑵裂项相消法 一般地,当数列的通项 时,往往可将 变成两项的差,采用裂项相消法求和.‎ 可用待定系数法进行裂项:‎ 设,通分整理后与原式相比较,根据对应项系数相等得,从而可得 常见的拆项公式有:‎ ‎①‎ ‎② ‎ ‎③‎ ‎④‎ ‎⑤‎ ‎⑶分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.一般分两步:①找通向项公式②由通项公式确定如何分组.‎ ‎⑷倒序相加法 如果一个数列,与首末两项等距的两项之和等于首末两项之和,则可用把正着写与倒着写的两个和式相加,就得到了一个常数列的和,这种求和方法称为倒序相加法。特征:‎ ‎⑸记住常见数列的前项和:‎ ‎①‎ ‎②‎ ‎③‎ ‎§3.1、不等关系与不等式 ‎1、不等式的基本性质 ‎①(对称性)‎ ‎②(传递性)‎ ‎③(可加性)‎ ‎(同向可加性)‎ ‎(异向可减性)‎ ‎④(可积性)‎ ‎⑤(同向正数可乘性)‎ ‎(异向正数可除性)‎ ‎⑥(平方法则)‎ ‎⑦(开方法则)‎ ‎⑧(倒数法则)‎ ‎2、几个重要不等式 ‎①,(当且仅当时取号). 变形公式:‎ ‎②(基本不等式) ,(当且仅当时取到等号).‎ 变形公式: ‎ 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.‎ ‎③(三个正数的算术—几何平均不等式)(当且仅当 时取到等号).‎ ‎④‎ ‎(当且仅当时取到等号).‎ ‎⑤‎ ‎(当且仅当时取到等号).‎ ‎⑥(当仅当a=b时取等号)‎ ‎(当仅当a=b时取等号)‎ ‎⑦‎ 其中 规律:小于1同加则变大,大于1同加则变小.‎ ‎⑧‎ ‎⑨绝对值三角不等式 命题与逻辑结构 知识点:‎ ‎1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.‎ 真命题:判断为真的语句.假命题:判断为假的语句.‎ ‎2、“若,则”形式的命题中的称为命题的条件,称为命题的结论.‎ ‎3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题。若原命题为“若,则”,它的逆命题为“若,则”.‎ ‎4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若,则”,则它的否命题为“若,则”.‎ ‎5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题。其中一个命题称为原命题,另一个称为原命题的逆否命题。若原命题为“若,则”,则它的否命题为“若,则”。‎ ‎6、四种命题的真假性:‎ 原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 假 假 假 假 假 四种命题的真假性之间的关系:‎ 两个命题互为逆否命题,它们有相同的真假性;‎ 两个命题为互逆命题或互否命题,它们的真假性没有关系.‎ ‎7、若,则是的充分条件,是的必要条件.‎ 若,则是的充要条件(充分必要条件).‎ ‎8、用联结词“且”把命题和命题联结起来,得到一个新命题,记作.‎ 当、都是真命题时,是真命题;当、两个命题中有一个命题是假命题时,是假命题.‎ 用联结词“或”把命题和命题联结起来,得到一个新命题,记作.‎ 当、两个命题中有一个命题是真命题时,是真命题;当、两个命题都是假命题时,‎ 是假命题.‎ 对一个命题全盘否定,得到一个新命题,记作.若是真命题,则必是假命题;若是假命题,则必是真命题.‎ ‎9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“”表示.‎ 含有全称量词的命题称为全称命题.‎ 全称命题“对中任意一个,有成立”,记作“,”.‎ 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“”表示.含有存在量词的命题称为特称命题.‎ 特称命题“存在中的一个,使成立”,记作“,”.‎ ‎10、全称命题:,,它的否定:,。全称命题的否定是特称命题。‎ 特称命题:,,它的否定:,。特称命题的否定是全称命题。‎ 第二章:圆锥曲线 知识点:‎ ‎1、求曲线的方程(点的轨迹方程)的步骤:建、设、限、代、化 ‎ ‎①建立适当的直角坐标系;‎ ‎②设动点及其他的点;‎ ‎③找出满足限制条件的等式;‎ ‎④将点的坐标代入等式;‎ ‎⑤化简方程,并验证(查漏除杂)。‎ ‎2、平面内与两个定点,的距离之和等于常数(大于)的点的轨迹称为椭圆。这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距。‎ ‎3、椭圆的几何性质:‎ 焦点的位置 焦点在轴上 焦点在轴上 图形 标准方程 第一定义 到两定点的距离之和等于常数2,即()‎ 第二定义 与一定点的距离和到一定直线的距离之比为常数,即 范围 且 且 顶点 ‎、‎ ‎、‎ ‎、‎ ‎、‎ 轴长 长轴的长 短轴的长 ‎ 对称性 关于轴、轴对称,关于原点中心对称 焦点 ‎、‎ ‎、‎ 焦距 离心率 ‎ ‎ 准线方程 焦半径 左焦半径:‎ 右焦半径:‎ 下焦半径:‎ 上焦半径:‎ 焦点三角形面积 通径 过焦点且垂直于长轴的弦叫通径:‎ ‎(焦点)弦长公式 ‎,‎ ‎4、设是椭圆上任一点,点到对应准线的距离为,点到对应准线的距离为,则。‎ ‎5、平面内与两个定点,的距离之差的绝对值等于常数(小于)的点的轨迹称为双曲线。这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距。‎ ‎6、双曲线的几何性质:‎ 焦点的位置 焦点在轴上 焦点在轴上 图形 标准方程 第一定义 到两定点的距离之差的绝对值等于常数,即()‎ 第二定义 与一定点的距离和到一定直线的距离之比为常数,即 范围 或,‎ 或,‎ 顶点 ‎、‎ ‎、‎ 轴长 实轴的长 虚轴的长 对称性 关于轴、轴对称,关于原点中心对称 焦点 ‎、‎ ‎、‎ 焦距 离心率 准线方程 渐近线方程 焦半径 在右支 在左支 在上支 在下支 焦点三角形面积 通径 过焦点且垂直于长轴的弦叫通径:‎ ‎7、实轴和虚轴等长的双曲线称为等轴双曲线。‎ ‎8、设是双曲线上任一点,点到对应准线的距离为,点到对应准线的距离为,则。‎ ‎9、平面内与一个定点和一条定直线的距离相等的点的轨迹称为抛物线.定点称为抛物线的焦点,定直线称为抛物线的准线.‎ ‎10、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径”,即.‎ ‎11、焦半径公式:‎ 若点在抛物线上,焦点为,则;、‎ 若点在抛物线上,焦点为,则;‎ 若点在抛物线上,焦点为,则;‎ 若点在抛物线上,焦点为,则.‎ 12、 抛物线的几何性质:‎ 图形 标准方程 定义 与一定点和一条定直线的距离相等的点的轨迹叫做抛物线(定点不在定直线上)‎ 顶点 离心率 对称轴 轴 轴 范围 焦点 准线方程 焦半径 通径 过抛物线的焦点且垂直于对称轴的弦称为通径:‎ 焦点弦长 公式 参数的几何意义 参数表示焦点到准线的距离,越大,开口越阔 关于抛物线焦点弦的几个结论:‎ 设为过抛物线焦点的弦,,直线的倾斜角为,则 ‎⑴ ⑵ ‎ ‎⑶ 以为直径的圆与准线相切;‎ ‎⑷ 焦点对在准线上射影的张角为 ‎⑸ ‎ 空间向量知识点:‎ ‎1、空间向量的概念:‎ ‎(1)在空间,具有大小和方向的量称为空间向量.‎ ‎(2)向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.‎ ‎(3)向量的大小称为向量的模(或长度),记作.‎ ‎(4)模(或长度)为的向量称为零向量;模为的向量称为单位向量.‎ ‎(5)与向量长度相等且方向相反的向量称为的相反向量,记作.‎ ‎(6)方向相同且模相等的向量称为相等向量.‎ ‎2、空间向量的加法和减法:‎ ‎(1)求两个向量和的运算称为向量的加法,它遵循平行四边形法则.即:在空间以同一点为起点的两个已知向量、为邻边作平行四边形,则以起点的对角线就是与的和,这种求向量和的方法,称为向量加法的平行四边形法则.‎ ‎(2)求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点,作,,则.‎ ‎3、实数与空间向量的乘积是一个向量,称为向量的数乘运算.当时,与方向相同;当时,与方向相反;当时,为零向量,记为.的长度是的长度的倍.‎ ‎4、设,为实数,,是空间任意两个向量,则数乘运算满足分配律及结合律.‎ 分配律:;结合律:.‎ ‎5、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线.‎ ‎6、向量共线的充要条件:对于空间任意两个向量,,的充要条件是存在实数,使.‎ ‎7、平行于同一个平面的向量称为共面向量.‎ ‎8、向量共面定理:空间一点位于平面内的充要条件是存在有序实数对,,使;或对空间任一定点,有;或若四点,,,共面,则.‎ ‎9、已知两个非零向量和,在空间任取一点,作,,则称为向量,的夹角,记作.两个向量夹角的取值范围是:.‎ ‎10、对于两个非零向量和,若,则向量,互相垂直,记作.‎ ‎11、已知两个非零向量和,则称为,的数量积,记作.即.零向量与任何向量的数量积为.‎ ‎12、等于的长度与在的方向上的投影的乘积.‎ ‎13若,为非零向量,为单位向量,则有 ‎;;‎ ‎,,;;.‎ ‎14量数乘积的运算律:‎ ‎; ; .‎ ‎15、空间向量基本定理:若三个向量,,不共面,则对空间任一向量,存在实数组,使得.‎ ‎16、三个向量,,不共面,则所有空间向量组成的集合是 ‎.这个集合可看作是由向量,,生成的,称为空间的一个基底,,,称为基向量.空间任意三个不共面的向量都可以构成空间的一个基底.‎ ‎17、设,,为有公共起点的三个两两垂直的单位向量(称它们为单位正交基底),以,,的公共起点为原点,分别以,,的方向为轴,轴,轴的正方向建立空间直角坐标系.则对于空间任意一个向量,一定可以把它平移,使它的起点与原点重合,得到向量.存在有序实数组,使得.把,,称作向量在单位正交基底,,下的坐标,记作.此时,向量的坐标是点在空间直角坐标系中的坐标.‎ ‎18、设,,则 ‎(1).‎ ‎(2). ‎ ‎(3).‎ ‎(4).‎ ‎(5)若、为非零向量,则.‎ ‎(6)若,则.‎ ‎(7).‎ ‎(8).‎ ‎(9),,则.‎ ‎19、在空间中,取一定点作为基点,那么空间中任意一点的位置可以用向量来表示.向量称为点的位置向量.‎ ‎20、空间中任意一条直线的位置可以由上一个定点以及一个定方向确定.点是直线上一点,向量表示直线的方向向量,则对于直线上的任意一点,有,这样点和向量不仅可以确定直线的位置,还可以具体表示出直线上的任意一点.‎ ‎21、空间中平面的位置可以由内的两条相交直线来确定.设这两条相交直线相交于点 ‎,它们的方向向量分别为,.为平面上任意一点,存在有序实数对,使得,这样点与向量,就确定了平面的位置.‎ ‎22、直线垂直,取直线的方向向量,则向量称为平面的法向量.‎ ‎23、若空间不重合两条直线,的方向向量分别为,,‎ 则,.‎ ‎24、若直线的方向向量为,平面的法向量为,且,‎ 则,.‎ ‎25、若空间不重合的两个平面,的法向量分别为,,则,.‎ ‎26、设异面直线,的夹角为,方向向量为,,其夹角为,则有.‎ ‎27、设直线的方向向量为,平面的法向量为,与所成的角为,与的夹角为,则有.‎ ‎28、设,是二面角的两个面,的法向量,则向量,的夹角(或其补角)就是二面角的平面角的大小.若二面角的平面角为,则.‎ ‎29、点与点之间的距离可以转化为两点对应向量的模计算.‎ ‎30、在直线上找一点,过定点且垂直于直线的向量为,则定点到直线的距离为.‎ ‎31、点是平面外一点,是平面内的一定点,为平面的一个法向量,则点到平面的距离为.‎ 导数及其应用 一.导数概念的引入 1. 导数的物理意义:‎ 瞬时速率。一般的,函数在处的瞬时变化率是,‎ 我们称它为函数在处的导数,记作或,即=‎ 2. 导数的几何意义:‎ 曲线的切线.通过图像,我们可以看出当点趋近于时,直线与曲线相切。容易知道,割线的斜率是,当点趋近于时,函数在处的导数就是切线PT的斜率k,即 3. 导函数:当x变化时,便是x的一个函数,我们称它为的导函数. 的导函数有时也记作,即 二.导数的计算 基本初等函数的导数公式:‎ ‎1若(c为常数),则; 2 若,则;‎ ‎3 若,则 4 若,则;‎ ‎5 若,则 6 若,则 ‎7 若,则 8 若,则 导数的运算法则 ‎1. 2. ‎ ‎3. ‎ 复合函数求导 和,称则可以表示成为的函数,即为一个复合函数 三.导数在研究函数中的应用 ‎1.函数的单调性与导数:‎ ‎ 一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内 ‎(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.‎ ‎2.函数的极值与导数 极值反映的是函数在某一点附近的大小情况. ‎ 求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值;‎ ‎4.函数的最大(小)值与导数 ‎ 求函数在上的最大值与最小值的步骤: (1)求函数在内的极值;‎ (2) 将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值.‎ 推理与证明 考点一 合情推理与类比推理 根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理 根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.‎ 类比推理的一般步骤:‎ (1) 找出两类事物的相似性或一致性;‎ (2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);‎ (3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的.‎ (1) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.‎ 考点二 演绎推理(俗称三段论)‎ 由一般性的命题推出特殊命题的过程,这种推理称为演绎推理.‎ 考点三 数学归纳法 1. 它是一个递推的数学论证方法.‎ 2. 步骤:A.命题在n=1(或)时成立,这是递推的基础;B.假设在n=k时命题成立; C.证明n=k+1时命题也成立,‎ 完成这两步,就可以断定对任何自然数(或n>=,且)结论都成立。‎ 考点三 证明 1. 反证法: 2、分析法: 3、综合法:‎ 数系的扩充和复数的概念 复数的概念 (1) 复数:形如的数叫做复数,和分别叫它的实部和虚部.‎ (2) 分类:复数中,当,就是实数; ,叫做虚数;当时,叫做纯虚数.‎ (3) 复数相等:如果两个复数实部相等且虚部相等就说这两个复数相等.‎ (4) 共轭复数:当两个复数实部相等,虚部互为相反数时,这两个复数互为共轭复数.‎ (5) 复平面:建立直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴除去原点的部分叫做虚轴。‎ (6) 两个实数可以比较大小,但两个复数如果不全是实数就不能比较大小。‎ 复数的运算 ‎1.复数的加,减,乘,除按以下法则进行 设则 ‎(1) (2) (3) ‎ ‎2,几个重要的结论 ‎(1) (2) (3)若为虚数,则 ‎3.运算律 ‎(1) ;(2) ;(3)‎ ‎4.关于虚数单位i的一些固定结论:‎ ‎(1) (2) (3)‎ ‎ (2)‎ 第一章 计数原理 知识点:‎ ‎1、分类加法计数原理:做一件事情,完成它有N类办法,在第一类办法中有M1种不同的方法,在第二类办法中有M2种不同的方法,……,在第N类办法中有MN种不同的方法,那么完成这件事情共有M1+M2+……+MN种不同的方法。 ‎ ‎2、分步乘法计数原理:做一件事,完成它需要分成N个步骤,做第一 步有m1种不同的方法,做第二步有M2不同的方法,……,做第N步有MN不同的方法.那么完成这件事共有 N=M1M2...MN 种不同的方法。‎ ‎3、排列:从n个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列 ‎4、排列数: ‎ ‎5、组合:从n个不同的元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。‎ ‎6、组合数: ‎ ‎ ‎ ‎7、二项式定理:‎ ‎8、二项式通项公式 第二章 随机变量及其分布 1、 随机变量:如果随机试验可能出现的结果可以用一个变量X来表示,并且X是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X、Y等或希腊字母 ξ、η等表示。‎ 2、 离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.‎ ‎3、离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,..... ,xi ,......,xn ‎ X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列 ‎4、分布列性质① pi≥0, i =1,2, …  ; ② p1 + p2 +…+pn= 1.‎ ‎5、二点分布:如果随机变量X的分布列为:‎ 其中03.841时,X与Y有95%可能性有关;K2>6.635时X与Y有99%可能性有关 回归分析 ‎ 回归直线方程  ‎ ‎ 其中, ‎ 高中数学常用公式及常用结论 ‎1. 元素与集合的关系 ‎,.‎ ‎2.德摩根公式 ‎ ‎.‎ ‎3.包含关系 ‎4.容斥原理 ‎ ‎.‎ ‎ 5.集合的子集个数共有 个;真子集有–1个;非空子集有 –1个;非空的真子集有–2个.‎ ‎6.二次函数的解析式的三种形式 ‎(1)一般式;‎ ‎(2)顶点式;‎ ‎(3)零点式. ‎ ‎7.解连不等式常有以下转化形式 ‎.‎ ‎8.方程在上有且只有一个实根,与不等价,前者是后者的一个必要而不是充分条件.特别地, 方程有且只有一个实根在内,等价于,或且,或且.‎ ‎9.闭区间上的二次函数的最值 ‎ ‎ 二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下:‎ ‎(1)当a>0时,若,则;‎ ‎,,.‎ ‎(2)当a<0时,若,则,若,则,.‎ ‎10.一元二次方程的实根分布 依据:若,则方程在区间内至少有一个实根 .‎ ‎ 设,则 ‎(1)方程在区间内有根的充要条件为或;‎ ‎(2)方程在区间内有根的充要条件为或或或;‎ ‎(3)方程在区间内有根的充要条件为或 .‎ ‎11.定区间上含参数的二次不等式恒成立的条件依据 ‎(1)在给定区间的子区间(形如,,不同)上含参数的二次不等式(为参数)恒成立的充要条件是.‎ ‎(2)在给定区间的子区间上含参数的二次不等式(‎ 为参数)恒成立的充要条件是.‎ ‎(3)恒成立的充要条件是或.‎ ‎12.真值表 ‎ p q 非p p或q p且q 真 真 假 真 真 真 假 假 真 假 假 真 真 真 假 假 假 真 假 假 ‎ 13.常见结论的否定形式 原结论 反设词 原结论 反设词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个 大于 不大于 至少有个 至多有()个 小于 不小于 至多有个 至少有()个 对所有,‎ 成立 存在某,‎ 不成立 或 且 对任何,‎ 不成立 存在某,‎ 成立 且 或 ‎ ‎ ‎14.四种命题的相互关系 原命题       互逆       逆命题 若p则q               若q则p ‎       互       互 ‎  互        为   为        互 ‎  否                     否 ‎           逆   逆           ‎ ‎         否       否 否命题               逆否命题   ‎ 若非p则非q    互逆      若非q则非p ‎15.充要条件 ‎ (1)充分条件:若,则是充分条件.‎ ‎(2)必要条件:若,则是必要条件.‎ ‎(3)充要条件:若,且,则是充要条件.‎ 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.‎ ‎16.函数的单调性 ‎(1)设那么 上是增函数;‎ 上是减函数.‎ ‎(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.‎ ‎17.如果函数和都是减函数,则在公共定义域内,和函数也是减函数; 如果函数和在其对应的定义域上都是减函数,则复合函数是增函数.‎ ‎18.奇偶函数的图象特征 奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.‎ ‎19.若函数是偶函数,则;若函数是偶函数,则.‎ ‎20.对于函数(),恒成立,则函数的对称轴是函数;两个函数与 的图象关于直线对称.‎ ‎21.若,则函数的图象关于点对称; 若,则函数为周期为的周期函数.‎ ‎22.多项式函数的奇偶性 多项式函数是奇函数的偶次项(即奇数项)的系数全为零.‎ 多项式函数是偶函数的奇次项(即偶数项)的系数全为零.‎ ‎23.函数的图象的对称性 ‎(1)函数的图象关于直线对称 ‎.‎ ‎(2)函数的图象关于直线对称 ‎.‎ ‎24.两个函数图象的对称性 ‎(1)函数与函数的图象关于直线(即轴)对称.‎ ‎(2)函数与函数的图象关于直线对称.‎ ‎(3)函数和的图象关于直线y=x对称.‎ ‎25.若将函数的图象右移、上移个单位,得到函数的图象;若将曲线的图象右移、上移个单位,得到曲线的图象.‎ ‎26.互为反函数的两个函数的关系 ‎.‎ ‎27.若函数存在反函数,则其反函数为,并不是,而函数是的反函数.‎ ‎28.几个常见的函数方程 ‎ (1)正比例函数,.‎ ‎(2)指数函数,.‎ ‎(3)对数函数,.‎ ‎(4)幂函数,.‎ ‎(5)余弦函数,正弦函数,,‎ ‎. ‎ ‎29.几个函数方程的周期(约定a>0)‎ ‎(1),则的周期T=a;‎ ‎(2),‎ 或,‎ 或,‎ 或,则的周期T=2a;‎ ‎(3),则的周期T=3a;‎ ‎(4)且,则的周期T=4a;‎ ‎(5)‎ ‎,则的周期T=5a;‎ ‎(6),则的周期T=6a.‎ ‎30.分数指数幂 ‎ ‎(1)(,且).‎ ‎(2)(,且).‎ ‎31.根式的性质 ‎(1).‎ ‎(2)当为奇数时,;‎ 当为偶数时,.‎ ‎32.有理指数幂的运算性质 ‎(1) .‎ ‎(2) .‎ ‎(3).‎ 注: 若a>0,p是一个无理数,则ap表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.‎ ‎33.指数式与对数式的互化式 ‎ .‎ ‎34.对数的换底公式 ‎ ‎ (,且,,且, ).‎ 推论 (,且,,且,, ).‎ ‎35.对数的四则运算法则 若a>0,a≠1,M>0,N>0,则 ‎(1);‎ ‎(2) ;‎ ‎(3).‎ ‎36.设函数,记.若的定义域为,则,且;若的值域为,则,且.对于的情形,需要单独检验.‎ ‎37. 对数换底不等式及其推广 ‎ 若,,,,则函数 ‎ (1)当时,在和上为增函数.‎ ‎, (2)当时,在和上为减函数.‎ 推论:设,,,且,则 ‎(1).‎ ‎(2).‎ ‎38. 平均增长率的问题 如果原来产值的基础数为N,平均增长率为,则对于时间的总产值,有.‎ ‎39.数列的同项公式与前n项的和的关系 ‎( 数列的前n项的和为).‎ ‎40.等差数列的通项公式 ‎;‎ 其前n项和公式为 ‎.‎ ‎41.等比数列的通项公式 ‎;‎ 其前n项的和公式为 或.‎ ‎42.等比差数列:的通项公式为 ‎;‎ 其前n项和公式为 ‎.‎ ‎43.分期付款(按揭贷款) ‎ 每次还款元(贷款元,次还清,每期利率为).‎ ‎44.常见三角不等式 ‎(1)若,则.‎ ‎(2) 若,则.‎ ‎(3) .‎ ‎45.同角三角函数的基本关系式 ‎ ‎,=,.‎ ‎46.正弦、余弦的诱导公式 ‎(n为偶数)‎ ‎(n为奇数)‎ ‎(n为偶数)‎ ‎(n为奇数)‎ ‎ ‎ ‎47.和角与差角公式 ‎ ;‎ ‎;‎ ‎.‎ ‎(平方正弦公式);‎ ‎.‎ ‎=(辅助角所在象限由点的象限决定, ).‎ ‎48.二倍角公式 ‎ ‎.‎ ‎.‎ ‎.‎ ‎49. 三倍角公式 ‎ ‎.‎ ‎..‎ ‎50.三角函数的周期公式 ‎ 函数,x∈R及函数,x∈R(A,ω,为常数,且A≠0,ω>0)的周期;函数,(A,ω,为常数,且A≠0,ω>0)的周期.‎ ‎51.正弦定理 ‎ ‎.‎ ‎52.余弦定理 ‎;‎ ‎;‎ ‎.‎ ‎53.面积定理 ‎(1)(分别表示a、b、c边上的高).‎ ‎(2).‎ ‎(3).‎ ‎54.三角形内角和定理 ‎ 在△ABC中,有 ‎.‎ ‎55. 简单的三角方程的通解 ‎ .‎ ‎ .‎ ‎.‎ 特别地,有 ‎.‎ ‎ .‎ ‎.‎ ‎56.最简单的三角不等式及其解集 ‎ .‎ ‎.‎ ‎ .‎ ‎ .‎ ‎ .‎ ‎.‎ ‎57.实数与向量的积的运算律 设λ、μ为实数,那么 ‎(1) 结合律:λ(μa)=(λμ)a;‎ ‎(2)第一分配律:(λ+μ)a=λa+μa;‎ ‎(3)第二分配律:λ(a+b)=λa+λb.‎ ‎58.向量的数量积的运算律:‎ ‎(1) a·b= b·a (交换律);‎ ‎(2)(a)·b= (a·b)=a·b= a·(b);‎ ‎(3)(a+b)·c= a ·c +b·c.‎ ‎59.平面向量基本定理  ‎ 如果e1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e1+λ2e2.‎ 不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.‎ ‎60.向量平行的坐标表示  ‎ ‎ 设a=,b=,且b0,则ab(b0).‎ ‎53. a与b的数量积(或内积)‎ a·b=|a||b|cosθ.‎ ‎ 61. a·b的几何意义 数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.‎ ‎62.平面向量的坐标运算 ‎(1)设a=,b=,则a+b=.‎ ‎(2)设a=,b=,则a-b=. ‎ ‎ (3)设A,B,则.‎ ‎(4)设a=,则a=.‎ ‎(5)设a=,b=,则a·b=.‎ ‎63.两向量的夹角公式 ‎(a=,b=).‎ ‎64.平面两点间的距离公式 ‎ =‎ ‎(A,B).‎ ‎65.向量的平行与垂直 ‎ 设a=,b=,且b0,则 A||bb=λa .‎ ab(a0)a·b=0.‎ ‎66.线段的定比分公式  ‎ 设,,是线段的分点,是实数,且,则 ‎().‎ ‎67.三角形的重心坐标公式 ‎ ‎△ABC三个顶点的坐标分别为、、,则△ABC的重心的坐标是.‎ ‎68.点的平移公式 ‎ ‎ .‎ 注:图形F上的任意一点P(x,y)在平移后图形上的对应点为,且的坐标为.‎ ‎69.“按向量平移”的几个结论 ‎(1)点按向量a=平移后得到点.‎ ‎(2) 函数的图象按向量a=平移后得到图象,则的函数解析式为.‎ ‎(3) 图象按向量a=平移后得到图象,若的解析式,则的函数解析式为.‎ ‎(4)曲线:按向量a=平移后得到图象,则的方程为.‎ ‎(5) 向量m=按向量a=平移后得到的向量仍然为m=.‎ ‎70. 三角形五“心”向量形式的充要条件 设为所在平面上一点,角所对边长分别为,则 ‎(1)为的外心.‎ ‎(2)为的重心.‎ ‎(3)为的垂心.‎ ‎(4)为的内心.‎ ‎(5)为的的旁心.‎ ‎71.常用不等式:‎ ‎(1)(当且仅当a=b时取“=”号).‎ ‎(2)(当且仅当a=b时取“=”号).‎ ‎(3)‎ ‎(4)柯西不等式 ‎(5).‎ ‎72.极值定理 已知都是正数,则有 ‎(1)若积是定值,则当时和有最小值;‎ ‎(2)若和是定值,则当时积有最大值.‎ 推广 已知,则有 ‎(1)若积是定值,则当最大时,最大;‎ 当最小时,最小.‎ ‎(2)若和是定值,则当最大时, 最小;‎ 当最小时, 最大.‎ ‎73.一元二次不等式,如果与同号,则其解集在两根之外;如果与异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.‎ ‎;‎ ‎.‎ ‎74.含有绝对值的不等式 ‎ 当a> 0时,有 ‎.‎ 或.‎ ‎75.无理不等式 ‎(1) .‎ ‎(2).‎ ‎(3).‎ ‎76.指数不等式与对数不等式 ‎ ‎(1)当时,‎ ‎; ‎ ‎.‎ ‎(2)当时,‎ ‎;‎ ‎77.斜率公式 ‎ ‎(、).‎ ‎78.直线的五种方程 ‎ ‎(1)点斜式 (直线过点,且斜率为).‎ ‎(2)斜截式 (b为直线在y轴上的截距).‎ ‎(3)两点式 ()(、 ()).‎ ‎(4)截距式 (分别为直线的横、纵截距,)‎ ‎(5)一般式 (其中A、B不同时为0).‎ ‎79.两条直线的平行和垂直 ‎ ‎(1)若,‎ ‎①;‎ ‎②.‎ ‎(2)若,,且A1、A2、B1、B2都不为零,‎ ‎①;‎ ‎②;‎ ‎80.夹角公式 ‎ ‎(1).‎ ‎(,,)‎ ‎(2).‎ ‎(,,).‎ 直线时,直线l1与l2的夹角是.‎ ‎81. 到的角公式 ‎ ‎(1).‎ ‎(,,)‎ ‎(2).‎ ‎(,,).‎ 直线时,直线l1到l2的角是.‎ ‎82.四种常用直线系方程 ‎ (1)定点直线系方程:经过定点的直线系方程为(除直线),其中是待定的系数; 经过定点的直线系方程为,其中是待定的系数.‎ ‎(2)共点直线系方程:经过两直线,的交点的直线系方程为(除),其中λ是待定的系数.‎ ‎(3)平行直线系方程:直线中当斜率k一定而b变动时,表示平行直线系方程.与直线平行的直线系方程是(),λ是参变量.‎ ‎(4)垂直直线系方程:与直线 (A≠0,B≠0)垂直的直线系方程是,λ是参变量.‎ ‎83.点到直线的距离 ‎ ‎(点,直线:).‎ ‎84. 或所表示的平面区域 设直线,则或所表示的平面区域是:‎ 若,当与同号时,表示直线的上方的区域;当与异号时,表示直线的下方的区域.简言之,同号在上,异号在下.‎ 若,当与同号时,表示直线的右方的区域;当与异号时,表示直线的左方的区域. 简言之,同号在右,异号在左.‎ ‎85. 或所表示的平面区域 设曲线(),则 或所表示的平面区域是:‎ 所表示的平面区域上下两部分;‎ 所表示的平面区域上下两部分.‎ ‎ 86. 圆的四种方程 ‎(1)圆的标准方程 .‎ ‎(2)圆的一般方程 (>0).‎ ‎(3)圆的参数方程 .‎ ‎(4)圆的直径式方程 (圆的直径的端点是、).‎ ‎87. 圆系方程 ‎(1)过点,的圆系方程是 ‎,其中是直线的方程,λ是待定的系数.‎ ‎(2)过直线:与圆:的交点的圆系方程是,λ是待定的系数.‎ ‎(3) 过圆:与圆:的交点的圆系方程是,λ 是待定的系数.‎ ‎88.点与圆的位置关系 点与圆的位置关系有三种 若,则 点在圆外;点在圆上;点在圆内.‎ ‎89.直线与圆的位置关系 直线与圆的位置关系有三种:‎ ‎;‎ ‎;‎ ‎.‎ 其中.‎ ‎90.两圆位置关系的判定方法 设两圆圆心分别为O1,O2,半径分别为r1,r2,‎ ‎;‎ ‎;‎ ‎;‎ ‎;‎ ‎.‎ ‎91.圆的切线方程 ‎(1)已知圆.‎ ‎①若已知切点在圆上,则切线只有一条,其方程是 ‎ .‎ 当圆外时, 表示过两个切点的切点弦方程.‎ ‎②过圆外一点的切线方程可设为,再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线.‎ ‎③斜率为k的切线方程可设为,再利用相切条件求b,必有两条切线.‎ ‎(2)已知圆.‎ ‎①过圆上的点的切线方程为;‎ ‎②斜率为的圆的切线方程为.‎ ‎92.椭圆的参数方程是.‎ ‎93.椭圆焦半径公式 ‎ ‎,.‎ ‎94.椭圆的的内外部 ‎(1)点在椭圆的内部.‎ ‎(2)点在椭圆的外部.‎ ‎95. 椭圆的切线方程 ‎ ‎(1)椭圆上一点处的切线方程是.‎ ‎ (2)过椭圆外一点所引两条切线的切点弦方程是 ‎.‎ ‎ (3)椭圆与直线相切的条件是.‎ ‎96.双曲线的焦半径公式 ‎,.‎ ‎97.双曲线的内外部 ‎(1)点在双曲线的内部.‎ ‎(2)点在双曲线的外部.‎ ‎98.双曲线的方程与渐近线方程的关系 ‎(1)若双曲线方程为渐近线方程:.‎ ‎ (2)若渐近线方程为双曲线可设为.‎ ‎ (3)若双曲线与有公共渐近线,可设为(,焦点在x轴上,,焦点在y轴上).‎ ‎99. 双曲线的切线方程 ‎ (1)双曲线上一点处的切线方程是.‎ ‎ (2)过双曲线外一点所引两条切线的切点弦方程是 ‎.‎ ‎ (3)双曲线与直线相切的条件是.‎ ‎100. 抛物线的焦半径公式 抛物线焦半径.‎ 过焦点弦长.‎ ‎101.抛物线上的动点可设为P或 P,其中 .‎ ‎102.二次函数的图象是抛物线:(1)顶点坐标为;(2)焦点的坐标为;(3)准线方程是.‎ ‎103.抛物线的内外部 ‎(1)点在抛物线的内部.‎ 点在抛物线的外部.‎ ‎(2)点在抛物线的内部.‎ 点在抛物线的外部.‎ ‎(3)点在抛物线的内部.‎ 点在抛物线的外部.‎ ‎(4) 点在抛物线的内部.‎ 点在抛物线的外部.‎ ‎104. 抛物线的切线方程 ‎(1)抛物线上一点处的切线方程是.‎ ‎ (2)过抛物线外一点所引两条切线的切点弦方程是.‎ ‎ (3)抛物线与直线相切的条件是.‎ ‎105.两个常见的曲线系方程 ‎(1)过曲线,的交点的曲线系方程是 ‎(为参数).‎ ‎(2)共焦点的有心圆锥曲线系方程,其中.当时,表示椭圆; 当时,表示双曲线.‎ ‎106.直线与圆锥曲线相交的弦长公式 或 ‎(弦端点A,由方程 消去y得到,,为直线的倾斜角,为直线的斜率). ‎ ‎107.圆锥曲线的两类对称问题 ‎(1)曲线关于点成中心对称的曲线是.‎ ‎(2)曲线关于直线成轴对称的曲线是 ‎.‎ ‎108.“四线”一方程 ‎ 对于一般的二次曲线,用代,用代,用代,用代,用代即得方程 ‎,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.‎ ‎109.证明直线与直线的平行的思考途径 ‎(1)转化为判定共面二直线无交点;‎ ‎(2)转化为二直线同与第三条直线平行;‎ ‎(3)转化为线面平行;‎ ‎(4)转化为线面垂直;‎ ‎(5)转化为面面平行.‎ ‎110.证明直线与平面的平行的思考途径 ‎(1)转化为直线与平面无公共点;‎ ‎(2)转化为线线平行;‎ ‎(3)转化为面面平行.‎ ‎111.证明平面与平面平行的思考途径 ‎(1)转化为判定二平面无公共点;‎ ‎(2)转化为线面平行;‎ ‎(3)转化为线面垂直.‎ ‎112.证明直线与直线的垂直的思考途径 ‎(1)转化为相交垂直;‎ ‎(2)转化为线面垂直;‎ ‎(3)转化为线与另一线的射影垂直;‎ ‎(4)转化为线与形成射影的斜线垂直.‎ ‎113.证明直线与平面垂直的思考途径 ‎(1)转化为该直线与平面内任一直线垂直;‎ ‎(2)转化为该直线与平面内相交二直线垂直;‎ ‎(3)转化为该直线与平面的一条垂线平行;‎ ‎(4)转化为该直线垂直于另一个平行平面;‎ ‎(5)转化为该直线与两个垂直平面的交线垂直.‎ ‎114.证明平面与平面的垂直的思考途径 ‎(1)转化为判断二面角是直二面角;‎ ‎(2)转化为线面垂直.‎ ‎115.空间向量的加法与数乘向量运算的运算律 ‎(1)加法交换律:a+b=b+a.‎ ‎(2)加法结合律:(a+b)+c=a+(b+c).‎ ‎(3)数乘分配律:λ(a+b)=λa+λb.‎ ‎116.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.‎ ‎117.共线向量定理 对空间任意两个向量a、b(b≠0 ),a∥b存在实数λ使a=λb.‎ 三点共线.‎ ‎、共线且不共线且不共线.‎ ‎118.共面向量定理 ‎ 向量p与两个不共线的向量a、b共面的存在实数对,使.‎ 推论 空间一点P位于平面MAB内的存在有序实数对,使,‎ 或对空间任一定点O,有序实数对,使.‎ ‎119.对空间任一点和不共线的三点A、B、C,满足(),则当时,对于空间任一点,总有P、A、B、C四点共面;当时,若平面ABC,则P、A、B、C四点共面;若平面ABC,则P、A、B、C四点不共面.‎ 四点共面与、共面 ‎(平面ABC).‎ ‎120.空间向量基本定理 ‎ 如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc.‎ 推论 设O、A、B、C是不共面的四点,则对空间任一点P,都存在唯一的三个有序实数x,y,z,使.‎ ‎121.射影公式 已知向量=a和轴,e是上与同方向的单位向量.作A点在上的射影,作B点在上的射影,则 ‎〈a,e〉=a·e ‎122.向量的直角坐标运算 设a=,b=则 ‎(1)a+b=;‎ ‎(2)a-b=;‎ ‎(3)λa= (λ∈R);‎ ‎(4)a·b=;‎ ‎123.设A,B,则 ‎= .‎ ‎124.空间的线线平行或垂直 设,,则 ‎;‎ ‎.‎ ‎125.夹角公式 ‎ 设a=,b=,则 cos〈a,b〉=.‎ 推论 ,此即三维柯西不等式.‎ ‎126. 四面体的对棱所成的角 四面体中, 与所成的角为,则 ‎.‎ ‎127.异面直线所成角 ‎=‎ ‎(其中()为异面直线所成角,分别表示异面直线的方向向量)‎ ‎128.直线与平面所成角 ‎(为平面的法向量).‎ ‎129.若所在平面若与过若的平面成的角,另两边,与平面成的角分别是、,为的两个内角,则 ‎.‎ 特别地,当时,有 ‎.‎ ‎130.若所在平面若与过若的平面成的角,另两边,与平面成的角分别是、,为的两个内角,则 ‎.‎ 特别地,当时,有 ‎.‎ ‎131.二面角的平面角 或(,为平面,的法向量).‎ ‎132.三余弦定理 设AC是α内的任一条直线,且BC⊥AC,垂足为C,又设AO与AB所成的角为,AB与AC所成的角为,AO与AC所成的角为.则.‎ ‎133. 三射线定理 若夹在平面角为的二面角间的线段与二面角的两个半平面所成的角是,,与二面角的棱所成的角是θ,则有 ;‎ ‎(当且仅当时等号成立).‎ ‎134.空间两点间的距离公式 ‎ 若A,B,则 ‎ =.‎ ‎135.点到直线距离 ‎(点在直线上,直线的方向向量a=,向量b=).‎ ‎136.异面直线间的距离 ‎ ‎(是两异面直线,其公垂向量为,分别是上任一点,为间的距离).‎ ‎137.点到平面的距离 ‎ ‎(为平面的法向量,是经过面的一条斜线,).‎ ‎138.异面直线上两点距离公式 ‎ ‎.‎ ‎.‎ ‎().‎ ‎ (两条异面直线a、b所成的角为θ,其公垂线段的长度为h.在直线a、b上分别取两点E、F,,,).‎ ‎ 139.三个向量和的平方公式 ‎ ‎ ‎140. 长度为的线段在三条两两互相垂直的直线上的射影长分别为,夹角分别为,则有 ‎.‎ ‎(立体几何中长方体对角线长的公式是其特例).‎ ‎141. 面积射影定理 ‎ ‎.‎ ‎(平面多边形及其射影的面积分别是、,它们所在平面所成锐二面角的为).‎ ‎142. 斜棱柱的直截面 已知斜棱柱的侧棱长是,侧面积和体积分别是和,它的直截面的周长和面积分别是和,则 ‎①.‎ ‎②.‎ ‎143.作截面的依据 三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行.‎ ‎144.棱锥的平行截面的性质 如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.‎ ‎145.欧拉定理(欧拉公式) ‎ ‎(简单多面体的顶点数V、棱数E和面数F).‎ ‎(1)=各面多边形边数和的一半.特别地,若每个面的边数为的多边形,则面数F与棱数E的关系:;‎ ‎(2)若每个顶点引出的棱数为,则顶点数V与棱数E的关系:.‎ ‎146.球的半径是R,则 其体积,‎ 其表面积.‎ ‎147.球的组合体 ‎ (1)球与长方体的组合体: ‎ 长方体的外接球的直径是长方体的体对角线长.‎ ‎ (2)球与正方体的组合体:‎ 正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长.‎ ‎ (3) 球与正四面体的组合体: ‎ 棱长为的正四面体的内切球的半径为,外接球的半径为.‎ ‎148.柱体、锥体的体积 ‎(是柱体的底面积、是柱体的高).‎ ‎(是锥体的底面积、是锥体的高).‎ ‎149.分类计数原理(加法原理)‎ ‎.‎ ‎150.分步计数原理(乘法原理)‎ ‎.‎ ‎151.排列数公式 ‎ ‎==.(,∈N*,且).‎ 注:规定.‎ ‎152.排列恒等式 ‎ ‎(1);‎ ‎(2);‎ ‎(3); ‎ ‎(4);‎ ‎(5).‎ ‎(6) .‎ ‎153.组合数公式 ‎ ‎===(∈N*,,且).‎ ‎154.组合数的两个性质 ‎(1)= ;‎ ‎(2) +=.‎ 注:规定.‎ ‎ 155.组合恒等式 ‎(1);‎ ‎(2);‎ ‎(3); ‎ ‎ (4)=;‎ ‎(5).‎ ‎(6).‎ ‎(7).‎ ‎ (8).‎ ‎(9).‎ ‎(10).‎ ‎156.排列数与组合数的关系 ‎ .‎ ‎157.单条件排列 以下各条的大前提是从个元素中取个元素的排列.‎ ‎(1)“在位”与“不在位”‎ ‎①某(特)元必在某位有种;②某(特)元不在某位有(补集思想)(着眼位置)(着眼元素)种.‎ ‎(2)紧贴与插空(即相邻与不相邻)‎ ‎①定位紧贴:个元在固定位的排列有种.‎ ‎②浮动紧贴:个元素的全排列把k个元排在一起的排法有种.注:此类问题常用捆绑法;‎ ‎③插空:两组元素分别有k、h个(),把它们合在一起来作全排列,k个的一组互不能挨近的所有排列数有种.‎ ‎(3)两组元素各相同的插空 ‎ 个大球个小球排成一列,小球必分开,问有多少种排法?‎ 当时,无解;当时,有种排法.‎ ‎(4)两组相同元素的排列:两组元素有m个和n个,各组元素分别相同的排列数为.‎ ‎158.分配问题 ‎(1)(平均分组有归属问题)将相异的、个物件等分给个人,各得件,其分配方法数共有.‎ ‎(2)(平均分组无归属问题)将相异的·个物体等分为无记号或无顺序的堆,其分配方法数共有 ‎.‎ ‎(3)(非平均分组有归属问题)将相异的个物体分给 个人,物件必须被分完,分别得到,,…,件,且,,…,这个数彼此不相等,则其分配方法数共有.‎ ‎(4)(非完全平均分组有归属问题)将相异的个物体分给个人,物件必须被分完,分别得到,,…,件,且,,…,这个数中分别有a、b、c、…个相等,则其分配方法数有 .‎ ‎(5)(非平均分组无归属问题)将相异的个物体分为任意的,,…,件无记号的堆,且,,…,这个数彼此不相等,则其分配方法数有.‎ ‎(6)(非完全平均分组无归属问题)将相异的个物体分为任意的,,…,件无记号的堆,且,,…,这个数中分别有a、b、c、…个相等,则其分配方法数有.‎ ‎(7)(限定分组有归属问题)将相异的()个物体分给甲、乙、丙,……等个人,物体必须被分完,如果指定甲得件,乙得件,丙得件,…时,则无论,,…,等个数是否全相异或不全相异其分配方法数恒有 ‎.‎ ‎159.“错位问题”及其推广 贝努利装错笺问题:信封信与个信封全部错位的组合数为 ‎.‎ 推广: 个元素与个位置,其中至少有个元素错位的不同组合总数为 ‎.‎ ‎160.不定方程的解的个数 ‎(1)方程()的正整数解有个.‎ ‎(2) 方程()的非负整数解有 个.‎ ‎(3) 方程()满足条件(,)的非负整数解有个.‎ ‎(4) 方程()满足条件(,)‎ 的正整数解有个.‎ ‎161.二项式定理 ;‎ 二项展开式的通项公式 ‎.‎ ‎162.等可能性事件的概率 ‎.‎ ‎163.互斥事件A,B分别发生的概率的和 P(A+B)=P(A)+P(B).‎ ‎164.个互斥事件分别发生的概率的和 P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).‎ ‎165.独立事件A,B同时发生的概率 P(A·B)= P(A)·P(B).‎ ‎166.n个独立事件同时发生的概率 ‎ P(A1· A2·…· An)=P(A1)· P(A2)·…· P(An).‎ ‎167.n次独立重复试验中某事件恰好发生k次的概率 ‎168.离散型随机变量的分布列的两个性质 ‎(1);‎ ‎(2).‎ ‎169.数学期望 ‎170.数学期望的性质 ‎(1).‎ ‎(2)若~,则.‎ ‎(3) 若服从几何分布,且,则.‎ ‎171.方差 ‎172.标准差 ‎=.‎ ‎173.方差的性质 ‎(1);‎ ‎(2)若~,则.‎ ‎(3) 若服从几何分布,且,则.‎ ‎174.方差与期望的关系 ‎.‎ ‎175.正态分布密度函数 ‎,式中的实数μ,(>0)是参数,分别表示个体的平均数与标准差.‎ ‎176.标准正态分布密度函数 ‎.‎ ‎177.对于,取值小于x的概率 ‎.‎ ‎.‎ ‎178.回归直线方程 ‎ ‎,其中.‎ ‎179.相关系数 ‎ ‎ .‎ ‎|r|≤1,且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小.‎ ‎180.特殊数列的极限 ‎ ‎(1).‎ ‎(2).‎ ‎(3)(无穷等比数列 ()的和).‎ ‎181. 函数的极限定理 ‎.‎ ‎182.函数的夹逼性定理 ‎ 如果函数f(x),g(x),h(x)在点x0的附近满足:‎ ‎(1);‎ ‎(2)(常数),‎ 则.‎ 本定理对于单侧极限和的情况仍然成立.‎ ‎183.几个常用极限 ‎(1),();‎ ‎(2),.‎ ‎184.两个重要的极限 ‎ ‎(1);‎ ‎(2)(e=2.718281845…).‎ ‎185.函数极限的四则运算法则 ‎ 若,,则 ‎(1);‎ ‎(2);‎ ‎(3).‎ ‎186.数列极限的四则运算法则 ‎ 若,则 ‎(1);‎ ‎(2);‎ ‎(3)‎ ‎(4)( c是常数).‎ ‎187.在处的导数(或变化率或微商)‎ ‎.‎ ‎188.瞬时速度 ‎.‎ ‎189.瞬时加速度 ‎.‎ ‎190.在的导数 ‎.‎ ‎191. 函数在点处的导数的几何意义 函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是.‎ ‎192.几种常见函数的导数 ‎(1) (C为常数).‎ ‎(2) .‎ ‎(3) .‎ ‎(4) .‎ ‎ (5) ;.‎ ‎(6) ; .‎ ‎193.导数的运算法则 ‎(1).‎ ‎(2).‎ ‎(3).‎ ‎194.复合函数的求导法则 ‎ 设函数在点处有导数,函数在点处的对应点U处有导数,则复合函数在点处有导数,且,或写作.‎ ‎195.常用的近似计算公式(当充小时)‎ ‎(1);;‎ ‎(2); ;‎ ‎(3);‎ ‎(4);‎ ‎(5)(为弧度);‎ ‎(6)(为弧度);‎ ‎(7)(为弧度)‎ ‎196.判别是极大(小)值的方法 当函数在点处连续时,‎ ‎(1)如果在附近的左侧,右侧,则是极大值;‎ ‎(2)如果在附近的左侧,右侧,则是极小值.‎ ‎197.复数的相等 ‎.()‎ ‎198.复数的模(或绝对值)‎ ‎==.‎ ‎199.复数的四则运算法则 ‎ (1);‎ ‎(2);‎ ‎(3);‎ ‎(4).‎ ‎200.复数的乘法的运算律 对于任何,有 交换律:.‎ 结合律:.‎ 分配律: .‎ ‎201.复平面上的两点间的距离公式 ‎ ‎(,).‎ ‎ 202.向量的垂直 ‎ 非零复数,对应的向量分别是,,则 ‎ 的实部为零为纯虚数 ‎ (λ为非零实数).‎ ‎203.实系数一元二次方程的解 ‎ 实系数一元二次方程,‎ ‎①若,则;‎ ‎②若,则;‎ ‎③若,它在实数集内没有实数根;在复数集内有且仅有两个共轭复数根.‎