海南高考真题 数学2016 13页

  • 4.33 MB
  • 2021-05-13 发布

海南高考真题 数学2016

  • 13页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2016年普通高等学校招生全国统一考试(全国卷二)‎ 理科数学 第Ⅰ卷 一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.‎ ‎(1)已知在复平面内对应的点在第四象限,则实数m的取值范围是 ‎(A) (B) (C) (D)‎ ‎(2)已知集合,,则 ‎(A) (B)‎ ‎(C) (D)‎ ‎(3)已知向量,且,则m=‎ ‎(A) (B) (C)6 (D)8‎ ‎(4)圆的圆心到直线 的距离为1,则a=‎ ‎(A) (B) (C) (D)2‎ ‎(5)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 ‎(A)24 (B)18 (C)12 (D)9‎ ‎(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 ‎(A)20π (B)24π (C)28π (D)32π 13‎ ‎(7)若将函数y=2sin 2x的图像向左平移个单位长度,则平移后图象的对称轴为 ‎(A) (B)‎ ‎(C) (D)‎ ‎(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的,,依次输入的a为2,2,5,则输出的 ‎(A)7 (B)12 (C)17 (D)34‎ ‎(9)若,则=‎ ‎(A) (B) (C) (D)‎ ‎(10)从区间随机抽取2n个数,,…,,,,…,,构成n个数对,,…,,其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率 的近似值为 ‎(A) (B) (C) (D)‎ ‎(11)已知,是双曲线E:的左,右焦点,点M在E上,与轴垂直,sin ,则E的离心率为 ‎(A) (B) (C) (D)2‎ ‎(12)已知函数满足,若函数与图像的交点 为,,⋯,,则( )‎ ‎(A)0 (B)m (C)2m (D)4m 第Ⅱ卷 本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.‎ 13‎ 二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上).‎ ‎(13)的内角A,B,C的对边分别为a,b,c,若,,,‎ 则 .‎ ‎(14),是两个平面,m,n是两条线,有下列四个命题:‎ ‎(15)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 ‎ ‎(16)若直线是曲线的切线,也是曲线的切线, .‎ 三.解答题:解答应写出文字说明,证明过程或演算步骤.‎ ‎17.(本题满分12分)‎ 为等差数列的前n项和,且记,其中表示不超过x的最大整数,如.‎ ‎(I)求;‎ ‎(II)求数列的前1 000项和.‎ ‎18.(本题满分12分)‎ 某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:‎ 上年度出险次数 ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ 保费 ‎0.85a a ‎1.25a ‎1.5a ‎1.75a ‎2a 设该险种一续保人一年内出险次数与相应概率如下:‎ 一年内出险次数 ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ 概率 ‎0.30‎ ‎0.15‎ ‎0.20‎ ‎0.20‎ ‎0.10‎ ‎0. 05‎ ‎(I)求一续保人本年度的保费高于基本保费的概率;‎ ‎(II)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;‎ 13‎ ‎(III)求续保人本年度的平均保费与基本保费的比值.‎ ‎19.(本小题满分12分)‎ 如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交BD于点H.将△DEF沿EF折到△的位置,.‎ ‎(I)证明:平面ABCD;‎ ‎(II)求二面角的正弦值.‎ ‎20. (本小题满分12分)‎ 已知椭圆E:的焦点在轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.‎ ‎(I)当t=4,时,求△AMN的面积;‎ ‎(II)当时,求k的取值范围.‎ ‎(21)(本小题满分12分)‎ ‎(I)讨论函数 的单调性,并证明当 >0时, ‎ ‎(II)证明:当 时,函数 有最小值.设g(x)的最小值为,求函数 的值域.‎ 请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,‎ 13‎ 做答时请写清题号 ‎ ‎(22)(本小题满分10分)选修4-1:集合证明选讲 如图,在正方形ABCD,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.‎ ‎(I) 证明:B,C,E,F四点共圆;‎ ‎(II)若AB=1,E为DA的中点,求四边形BCGF的面积.        ‎ ‎(23)(本小题满分10分)选修4—4:坐标系与参数方程 在直线坐标系xoy中,圆C的方程为(x+6)2+y2=25. ‎ ‎(I)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;‎ ‎(II)直线l的参数方程是(t为参数),l与C交于A、B两点,∣AB∣=,求l的斜率。‎ ‎(24)(本小题满分10分),选修4—5:不等式选讲 已知函数f(x)= ∣x-∣+∣x+∣,M为不等式f(x) <2的解集.‎ ‎(I)求M;‎ ‎(II)证明:当a,b∈M时,∣a+b∣<∣1+ab∣。‎ 13‎ ‎2016年普通高等学校招生全国统一考试 理科数学答案 ‎1.【解析】A ‎∴,,∴,故选A.‎ ‎2.【解析】C ‎,‎ ‎∴,∴,故选C.‎ ‎3.【解析】D ‎ ,‎ ‎∵,∴ 解得, 故选D.‎ ‎4.【解析】A 圆化为标准方程为:,‎ 故圆心为,,解得,‎ 故选A.‎ ‎5.【解析】B 有种走法,有种走法,由乘法原理知,共种走法 故选B.‎ ‎6.【解析】C 几何体是圆锥与圆柱的组合体,‎ 设圆柱底面圆半径为,周长为,圆锥母线长为,圆柱高为.‎ 由图得,,由勾股定理得:,‎ ‎,故选C.‎ ‎7.【解析】B 平移后图像表达式为,‎ 令,得对称轴方程:,故选B.‎ ‎8.【解析】C ‎ 第一次运算:,‎ 第二次运算:,‎ 第三次运算:,‎ 故选C.‎ 13‎ ‎9.【解析】D∵,,故选D.‎ ‎ 10.【解析】C 由题意得:在如图所示方格中,‎ 而平方和小于1的点均在如图所示的阴影中 由几何概型概率计算公式知,∴,故选C.‎ ‎11.【解析】A 离心率,由正弦定理得.故选A.‎ ‎12.【解析】B 由得关于对称,而也关于对称,‎ ‎∴对于每一组对称点 ,∴,故选B.‎ ‎13.【解析】 ‎ ‎∵,,,,,‎ 由正弦定理得:解得.‎ ‎14.【解析】②③④‎ ‎15.【解析】 ‎ 由题意得:丙不拿(2,3),若丙(1,2),则乙(2,3),甲(1,3)满足,‎ 若丙(1,3),则乙(2,3),甲(1,2)不满足,故甲(1,3),‎ ‎16.【解析】 ‎ 的切线为:(设切点横坐标为)的切线为:∴解得 ‎ ‎∴.‎ 13‎ 三.解答题 ‎17.(本题满分12分)‎ ‎【答案】(Ⅰ),, ;(Ⅱ)1893.‎ 试题解析:(Ⅰ)设的公差为,据已知有,解得 所以的通项公式为 ‎(Ⅱ)因为 所以数列的前项和为 ‎18.(本题满分12分)‎ 试题解析:(Ⅰ)设表示事件:“一续保人本年度的保费高于基本保费”,则事件发生当且仅当一年内出险次数大于1,故 ‎(Ⅱ)设表示事件:“一续保人本年度的保费比基本保费高出”,则事件发生当且仅当一年内出险次数大于3,故 又,故 因此所求概率为 ‎ (Ⅲ)记续保人本年度的保费为,则的分布列为 因此续保人本年度的平均保费与基本保费的比值为 13‎ ‎19.(本小题满分12分)‎ 试题解析:(I)由已知得,,又由得,故.‎ 因此,从而.由,得.‎ 由得.所以,.‎ 于是,,‎ 故.‎ 又,而,‎ 所以.‎ ‎(II)如图,以为坐标原点,的方向为轴的正方向,建立空间直角坐标系,则,,,,,,,.设是平面的法向量,则,即,所以可以取.设是平面的法向量,则,即,所以可以取 13‎ ‎.于是, .因此二面角的正弦值是.‎ ‎20.(本小题满分12分)‎ 试题解析:(I)设,则由题意知,当时,的方程为,.‎ 由已知及椭圆的对称性知,直线的倾斜角为.因此直线的方程为.‎ 将代入得.解得或,所以.‎ 因此的面积.‎ ‎(II)由题意,,.‎ 将直线的方程代入得.‎ 由得,故.‎ 由题设,直线的方程为,故同理可得,‎ 由得,即.‎ 当时上式不成立,‎ 因此.等价于,‎ 即.由此得,或,解得.‎ 13‎ 因此的取值范围是.‎ ‎21.本小题满分12分)‎ 试题解析:(Ⅰ)的定义域为.‎ 且仅当时,,所以在单调递增,‎ 因此当时,‎ 所以 ‎(II)‎ 由(I)知,单调递增,对任意 因此,存在唯一使得即,‎ 当时,单调递减;‎ 当时,单调递增.‎ 因此在处取得最小值,最小值为 于是,由单调递增 所以,由得 因为单调递增,对任意存在唯一的 使得所以的值域是 13‎ 综上,当时,有,的值域是 ‎22.‎ 试题解析:(I)因为,所以 则有 所以由此可得 由此所以四点共圆.‎ ‎(II)由四点共圆,知,连结,‎ 由为斜边的中点,知,故 因此四边形的面积是面积的2倍,即 ‎23.‎ 试题解析:(I)由可得的极坐标方程 ‎(II)在(I)中建立的极坐标系中,直线的极坐标方程为 由所对应的极径分别为将的极坐标方程代入的极坐标方程得 于是 13‎ 由得,‎ 所以的斜率为或.‎ ‎24.‎ 试题解析:(I)‎ 当时,由得解得;‎ 当时, ;‎ 当时,由得解得.‎ 所以的解集.‎ ‎(II)由(I)知,当时,,从而 ‎,‎ 因此 13‎