- 4.33 MB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2016年普通高等学校招生全国统一考试(全国卷二)
理科数学
第Ⅰ卷
一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)已知在复平面内对应的点在第四象限,则实数m的取值范围是
(A) (B) (C) (D)
(2)已知集合,,则
(A) (B)
(C) (D)
(3)已知向量,且,则m=
(A) (B) (C)6 (D)8
(4)圆的圆心到直线 的距离为1,则a=
(A) (B) (C) (D)2
(5)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为
(A)24 (B)18 (C)12 (D)9
(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为
(A)20π (B)24π (C)28π (D)32π
13
(7)若将函数y=2sin 2x的图像向左平移个单位长度,则平移后图象的对称轴为
(A) (B)
(C) (D)
(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的,,依次输入的a为2,2,5,则输出的
(A)7 (B)12 (C)17 (D)34
(9)若,则=
(A) (B) (C) (D)
(10)从区间随机抽取2n个数,,…,,,,…,,构成n个数对,,…,,其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率 的近似值为
(A) (B) (C) (D)
(11)已知,是双曲线E:的左,右焦点,点M在E上,与轴垂直,sin ,则E的离心率为
(A) (B) (C) (D)2
(12)已知函数满足,若函数与图像的交点
为,,⋯,,则( )
(A)0 (B)m (C)2m (D)4m
第Ⅱ卷
本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.
13
二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上).
(13)的内角A,B,C的对边分别为a,b,c,若,,,
则 .
(14),是两个平面,m,n是两条线,有下列四个命题:
(15)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是
(16)若直线是曲线的切线,也是曲线的切线, .
三.解答题:解答应写出文字说明,证明过程或演算步骤.
17.(本题满分12分)
为等差数列的前n项和,且记,其中表示不超过x的最大整数,如.
(I)求;
(II)求数列的前1 000项和.
18.(本题满分12分)
某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:
上年度出险次数
0
1
2
3
4
5
保费
0.85a
a
1.25a
1.5a
1.75a
2a
设该险种一续保人一年内出险次数与相应概率如下:
一年内出险次数
0
1
2
3
4
5
概率
0.30
0.15
0.20
0.20
0.10
0. 05
(I)求一续保人本年度的保费高于基本保费的概率;
(II)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;
13
(III)求续保人本年度的平均保费与基本保费的比值.
19.(本小题满分12分)
如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交BD于点H.将△DEF沿EF折到△的位置,.
(I)证明:平面ABCD;
(II)求二面角的正弦值.
20. (本小题满分12分)
已知椭圆E:的焦点在轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.
(I)当t=4,时,求△AMN的面积;
(II)当时,求k的取值范围.
(21)(本小题满分12分)
(I)讨论函数 的单调性,并证明当 >0时,
(II)证明:当 时,函数 有最小值.设g(x)的最小值为,求函数 的值域.
请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,
13
做答时请写清题号
(22)(本小题满分10分)选修4-1:集合证明选讲
如图,在正方形ABCD,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.
(I) 证明:B,C,E,F四点共圆;
(II)若AB=1,E为DA的中点,求四边形BCGF的面积.
(23)(本小题满分10分)选修4—4:坐标系与参数方程
在直线坐标系xoy中,圆C的方程为(x+6)2+y2=25.
(I)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;
(II)直线l的参数方程是(t为参数),l与C交于A、B两点,∣AB∣=,求l的斜率。
(24)(本小题满分10分),选修4—5:不等式选讲
已知函数f(x)= ∣x-∣+∣x+∣,M为不等式f(x) <2的解集.
(I)求M;
(II)证明:当a,b∈M时,∣a+b∣<∣1+ab∣。
13
2016年普通高等学校招生全国统一考试
理科数学答案
1.【解析】A
∴,,∴,故选A.
2.【解析】C
,
∴,∴,故选C.
3.【解析】D
,
∵,∴ 解得, 故选D.
4.【解析】A
圆化为标准方程为:,
故圆心为,,解得,
故选A.
5.【解析】B 有种走法,有种走法,由乘法原理知,共种走法
故选B.
6.【解析】C
几何体是圆锥与圆柱的组合体,
设圆柱底面圆半径为,周长为,圆锥母线长为,圆柱高为.
由图得,,由勾股定理得:,
,故选C.
7.【解析】B
平移后图像表达式为,
令,得对称轴方程:,故选B.
8.【解析】C
第一次运算:,
第二次运算:,
第三次运算:,
故选C.
13
9.【解析】D∵,,故选D.
10.【解析】C
由题意得:在如图所示方格中,
而平方和小于1的点均在如图所示的阴影中
由几何概型概率计算公式知,∴,故选C.
11.【解析】A
离心率,由正弦定理得.故选A.
12.【解析】B
由得关于对称,而也关于对称,
∴对于每一组对称点 ,∴,故选B.
13.【解析】
∵,,,,,
由正弦定理得:解得.
14.【解析】②③④
15.【解析】
由题意得:丙不拿(2,3),若丙(1,2),则乙(2,3),甲(1,3)满足,
若丙(1,3),则乙(2,3),甲(1,2)不满足,故甲(1,3),
16.【解析】
的切线为:(设切点横坐标为)的切线为:∴解得
∴.
13
三.解答题
17.(本题满分12分)
【答案】(Ⅰ),, ;(Ⅱ)1893.
试题解析:(Ⅰ)设的公差为,据已知有,解得
所以的通项公式为
(Ⅱ)因为
所以数列的前项和为
18.(本题满分12分)
试题解析:(Ⅰ)设表示事件:“一续保人本年度的保费高于基本保费”,则事件发生当且仅当一年内出险次数大于1,故
(Ⅱ)设表示事件:“一续保人本年度的保费比基本保费高出”,则事件发生当且仅当一年内出险次数大于3,故
又,故
因此所求概率为
(Ⅲ)记续保人本年度的保费为,则的分布列为
因此续保人本年度的平均保费与基本保费的比值为
13
19.(本小题满分12分)
试题解析:(I)由已知得,,又由得,故.
因此,从而.由,得.
由得.所以,.
于是,,
故.
又,而,
所以.
(II)如图,以为坐标原点,的方向为轴的正方向,建立空间直角坐标系,则,,,,,,,.设是平面的法向量,则,即,所以可以取.设是平面的法向量,则,即,所以可以取
13
.于是, .因此二面角的正弦值是.
20.(本小题满分12分)
试题解析:(I)设,则由题意知,当时,的方程为,.
由已知及椭圆的对称性知,直线的倾斜角为.因此直线的方程为.
将代入得.解得或,所以.
因此的面积.
(II)由题意,,.
将直线的方程代入得.
由得,故.
由题设,直线的方程为,故同理可得,
由得,即.
当时上式不成立,
因此.等价于,
即.由此得,或,解得.
13
因此的取值范围是.
21.本小题满分12分)
试题解析:(Ⅰ)的定义域为.
且仅当时,,所以在单调递增,
因此当时,
所以
(II)
由(I)知,单调递增,对任意
因此,存在唯一使得即,
当时,单调递减;
当时,单调递增.
因此在处取得最小值,最小值为
于是,由单调递增
所以,由得
因为单调递增,对任意存在唯一的
使得所以的值域是
13
综上,当时,有,的值域是
22.
试题解析:(I)因为,所以
则有
所以由此可得
由此所以四点共圆.
(II)由四点共圆,知,连结,
由为斜边的中点,知,故
因此四边形的面积是面积的2倍,即
23.
试题解析:(I)由可得的极坐标方程
(II)在(I)中建立的极坐标系中,直线的极坐标方程为
由所对应的极径分别为将的极坐标方程代入的极坐标方程得
于是
13
由得,
所以的斜率为或.
24.
试题解析:(I)
当时,由得解得;
当时, ;
当时,由得解得.
所以的解集.
(II)由(I)知,当时,,从而
,
因此
13