• 2.57 MB
  • 2021-05-13 发布

2016高考全国2卷数学试题及答案

  • 15页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2016高考全国二卷数学试题及答案 注意事项:‎ ‎ 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.‎ ‎ 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.‎ ‎ 3.全部答案在答题卡上完成,答在本试题上无效. ‎ ‎ 4. 考试结束后,将本试题和答题卡一并交回.‎ 第Ⅰ卷 一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.‎ ‎(1)已知在复平面内对应的点在第四象限,则实数m的取值范围是 ‎(A) (B)(C)(D)‎ ‎(2)已知集合,,则 ‎(A)(B)(C)(D)‎ ‎(3)已知向量,且,则m=‎ ‎(A)-8 (B)-6 (C)6 (D)8‎ ‎(4)圆的圆心到直线 的距离为1,则a=‎ ‎(A) (B) (C) (D)2‎ ‎(5)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 ‎(A)24 (B)18 (C)12 (D)9‎ ‎(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 ‎(A)20π (B)24π (C)28π (D)32π ‎(7)若将函数y=2sin 2x的图像向左平移个单位长度,则评议后图象的对称轴为 ‎(A)x=– (k∈Z) (B)x=+ (k∈Z) (C)x=– (k∈Z) (D)x=+ (k∈Z)‎ ‎(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=‎ ‎(A)7 (B)12 (C)17 (D)34‎ ‎(9)若cos(–α)= ,则sin 2α=‎ ‎(A) (B) (C)– (D)– ‎(10)从区间随机抽取2n个数,,…,,学科&网,,…,,构成n个数对,,…,,其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率 的近似值为 ‎(A) (B) (C) (D)‎ ‎(11)已知F1,F2是双曲线E的左,右焦点,点M在E上,M F1与 轴垂直,sin ,则E的离心率为 ‎(A) (B) (C) (D)2‎ ‎(12)已知函数学.科网满足,若函数与图像的交点为 则 ‎ ‎(A)0 (B)m (C)2m (D)4m 第II卷 本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.‎ 二、填空题:本大题共3小题,每小题5分 ‎ (13)△ABC的内角A、B、C的对边分别为a、b、c,若cos A=,cos C=,a=1,则b= .‎ ‎(14)α、β是两个平面,m、n是两条直线,有下列四个命题:‎ ‎(1)如果m⊥n,m⊥α,n∥β,那么α⊥β.‎ ‎(2)如果m⊥α,n∥α,那么m⊥n.‎ ‎(3)如果α∥β,mα,那么m∥β.  学科.网  ‎ ‎(4)如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.‎ 其中正确的命题有 .(填写所有正确命题的编号)‎ ‎(15)有三张卡片,分别写有1和2,1和3,2和3。甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,学.科网乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 。‎ ‎(16)若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+2)的切线,则b= 。‎ ‎ ‎ 三.解答题:解答应写出文字说明,证明过程或演算步骤.‎ ‎17.(本题满分12分)‎ 为等差数列的前n项和,且记,其中表示不超过x的最大整数,如.‎ ‎(I)求;‎ ‎(II)求数列的前1 000项和.‎ ‎18.(本题满分12分)‎ 某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:‎ 上年度出险次数 ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ 保费 ‎0.85a a ‎1.25a ‎1.5a ‎1.75a ‎2a 设该险种一续保人一年内出险次数与相应概率如下:‎ 一年内出险次数 ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ 概率 ‎0.30‎ ‎0.15‎ ‎0.20‎ ‎0.20‎ ‎0.10‎ ‎0. 05‎ ‎(I)求一续保人本年度的保费高于基本保费的概率;‎ ‎(II)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;‎ ‎(III)求续保人本年度的平均保费与基本保费的比值.‎ ‎19.(本小题满分12分)‎ 如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交BD于点H.将△DEF沿EF折到△的位置,.‎ 学.科.网    ‎ ‎ ‎ ‎(I)证明:平面ABCD;‎ ‎(II)求二面角的正弦值.‎ ‎20. (本小题满分12分)‎ 已知椭圆E:的焦点在轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.‎ ‎(I)当t=4,时,求△AMN的面积;‎ ‎(II)当时,求k的取值范围.‎ ‎(21)(本小题满分12分)‎ ‎(I)讨论函数 的单调性,并证明当 >0时, ‎ ‎(II)证明:当 时,函数 有最小值.设g(x)的最小值为,求函数 的值域.‎ 请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号 ‎ ‎(22)(本小题满分10分)选修4-1:集合证明选讲 如图,在正方形ABCD,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.‎ ‎(I) 证明:B,C,E,F四点共圆;‎ ‎(II)若AB=1,E为DA的中点,求四边形BCGF的面积.       学科&网 ‎(23)(本小题满分10分)选修4—4:坐标系与参数方程 在直线坐标系xoy中,圆C的方程为(x+6)2+y2=25. ‎ ‎(I)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;‎ ‎(II)直线l的参数方程是x=tcosα,‎y=tsinα,‎(t为参数),l与C交于A、B两点,∣AB∣=‎10‎,求l的斜率。‎ ‎(24)(本小题满分10分),选修4—5:不等式选讲 已知函数f(x)= ∣x-‎1‎‎2‎∣+∣x+‎1‎‎2‎∣,M为不等式f(x) <2的解集.‎ ‎(I)求M;‎ ‎(II)证明:当a,b∈M时,∣a+b∣<∣1+ab∣。‎ ‎2016高考全国2卷数学试题及答案第Ⅰ卷 一.选择题:‎ ‎(1)【答案】A ‎(2)【答案】C ‎(3)【答案】D ‎(4)【答案】A ‎(5)【答案】B ‎(6)【答案】C ‎(7)【答案】B ‎(8)【答案】C ‎(9)【答案】D ‎(10)【答案】C ‎(11)【答案】A ‎(12)【答案】C 第Ⅱ卷 二、填空题 ‎(13)【答案】‎ ‎(14) 【答案】②③④‎ ‎(15)【答案】1和3‎ ‎(16)【答案】‎ 三.解答题 ‎17.(本题满分12分)‎ ‎【答案】(Ⅰ),, ;(Ⅱ)1893.‎ ‎【解析】‎ 试题分析:(Ⅰ)先求公差、通项,再根据已知条件求;‎ ‎(Ⅱ)用分段函数表示,学.科.网再由等差数列的前项和公式求数列的前1 000项和.‎ 试题解析:(Ⅰ)设的公差为,据已知有,学.科.网解得 所以的通项公式为 ‎(Ⅱ)因为 所以数列的前项和为 考点:等差数列的的性质,前项和公式,学.科网对数的运算.‎ ‎【结束】‎ ‎18.(本题满分12分)‎ ‎【答案】(Ⅰ)根据互斥事件的概率公式求解;(Ⅱ)由条件概率公式求解;(Ⅲ)记续保人本年度的保费为,学.科网求的分布列为,在根据期望公式求解..‎ ‎【解析】‎ 试题分析:‎ 试题解析:(Ⅰ)设表示事件:“一续保人本年度的保费高于基本保费”,则事件发生当且仅当一年内出险次数大于1,故 ‎(Ⅱ)设表示事件:“一续保人本年度的保费比基本保费高出”,则事件发生当且仅当一年内出险次数大于3,故 又,故 因此所求概率为 ‎ (Ⅲ)记续保人本年度的保费为,则的分布列为 因此续保人本年度的平均保费与基本保费的比值为 考点: 条件概率,随机变量的分布列、期望.‎ ‎【结束】‎ ‎19.(本小题满分12分)‎ ‎【答案】(Ⅰ)详见解析;(Ⅱ).‎ ‎【解析】‎ 试题分析:(Ⅰ)证,再证,最后证;(Ⅱ)用向量法求解.‎ 试题解析:(I)由已知得,,又由得,故.‎ 因此,从而.由,得.‎ 由得.学.科网所以,.‎ 于是,,‎ 故.‎ 又,而,‎ 所以.‎ ‎(II)如图,以为坐标原点,的方向为轴的正方向,学.科网建立空间直角坐标 系,则,,,,,,,.设是平面的法向量,则,即,所以可以取.设是平面的法向量,则,即,所以可以取.于是, .因此二面角的正弦值是.‎ 考点:线面垂直的判定、二面角. ‎ ‎【结束】‎ ‎20.(本小题满分12分)‎ ‎【答案】(Ⅰ);(Ⅱ).‎ ‎【解析】‎ 试题分析:(Ⅰ)先求直线的方程,再求点的纵坐标,最后求的面积;(Ⅱ)设,,将直线的方程与椭圆方程组成方程组,消去,用表示,从而表示,同理用表示,再由求.‎ 试题解析:(I)设,则由题意知,当时,的方程为,.‎ 由已知及椭圆的对称性知,直线的倾斜角为.因此直线的方程为.‎ 将代入得.解得或,学.科网所以.‎ 因此的面积.‎ ‎(II)由题意,,.‎ 将直线的方程代入得.‎ 由得,故.‎ 由题设,直线的方程为,故同理可得,‎ 由得,学科&网即.‎ 当时上式不成立,‎ 因此.等价于,‎ 即.由此得,或,解得.‎ 因此的取值范围是.‎ 考点:椭圆的性质,直线与椭圆的位置关系. ‎ ‎【结束】‎ ‎(21)(本小题满分12分)‎ ‎【答案】(Ⅰ)详见解析;(Ⅱ).‎ ‎【解析】‎ 试题分析:(Ⅰ)先求定义域,用导数法求函数的单调性,学科&网当时,证明结论;(Ⅱ)用导数法求函数的最值,在构造新函数,又用导数法求解.‎ 试题解析:(Ⅰ)的定义域为.‎ 且仅当时,,所以在单调递增,‎ 因此当时,‎ 所以 ‎(II)‎ 由(I)知,单调递增,对任意 因此,存在唯一使得即,‎ 当时,单调递减;‎ 当时,单调递增.‎ 因此在处取得最小值,最小值为 于是,由单调递增 所以,由得 因为单调递增,对任意存在唯一的 使得所以的值域是 综上,当时,有,的值域是 考点: 函数的单调性、极值与最值.‎ ‎【结束】‎ 请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号 ‎(22)(本小题满分10分)选修4-1:几何证明选讲 ‎【答案】(Ⅰ)详见解析;(Ⅱ).‎ ‎【解析】‎ 试题分析:(Ⅰ)证再证四点共圆;(Ⅱ)证明四边形的面积是面积的2倍.‎ 试题解析:(I)学科&网因为,所以 则有 所以由此可得 由此所以四点共圆.‎ ‎(II)由四点共圆,知,连结,‎ 由为斜边的中点,知,故 因此四边形的面积是面积的2倍,即 考点: 三角形相似、全等,四点共圆 ‎【结束】‎ ‎(23)(本小题满分10分)选修4—4:坐标系与参数方程 ‎【答案】(Ⅰ);(Ⅱ).‎ ‎【解析】‎ 试题分析:(I)利用,可得C的极坐标方程;(II)先将直线的参数方程化为普通方程,再利用弦长公式可得的斜率.‎ 试题解析:(I)由可得的极坐标方程 ‎(II)在(I)中建立的极坐标系中,学科&网直线的极坐标方程为 由所对应的极径分别为将的极坐标方程代入的极坐标方程得 于是 由得,‎ 所以的斜率为或.‎ 考点:圆的极坐标方程与普通方程互化, 直线的参数方程,点到直线的距离公式.‎ ‎【结束】‎ ‎(24)(本小题满分10分)选修4—5:不等式选讲 ‎【答案】(Ⅰ);(Ⅱ)详见解析.‎ ‎【解析】‎ 试题分析:(I)先去掉绝对值,再分,和三种情况解不等式,即可得;(II)采用平方作差法,再进行因式分解,进而可证当,时,.‎ 试题解析:(I)‎ 当时,学科&网由得解得;‎ 当时, ;‎ 当时,由得解得.‎ 所以的解集.‎ ‎(II)由(I)知,当时,,从而 ‎,‎ 因此 考点:绝对值不等式,不等式的证明. ‎