- 888.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第1讲 等差数列与等比数列
1.(2015·课标全国Ⅰ)已知{an}是公差为1的等差数列,Sn为{an}的前n项和,若S8=4S4,则a10等于( )
A. B. C.10 D.12
2.(2015·安徽)已知数列{an}是递增的等比数列,a1+a4=9,a2a3=8,则数列{an}的前n项和等于________.
3.(2014·广东)若等比数列{an}的各项均为正数,且a10a11+a9a12=2e5,则ln a1+ln a2+…+ln a20=______.
4.(2013·江西)某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(n∈N*)等于________.
1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.数列求和及数列与函数、不等式的综合问题是高考考查的重点,考查分析问题、解决问题的综合能力.
热点一 等差数列、等比数列的运算
(1)通项公式
等差数列:an=a1+(n-1)d;
等比数列:an=a1·qn-1.
(2)求和公式
等差数列:Sn==na1+d;
等比数列:Sn==(q≠1).
(3)性质
若m+n=p+q,
在等差数列中am+an=ap+aq;
在等比数列中am·an=ap·aq.
例1 (1)设等差数列{an}的前n项和为Sn.若a1=-11,a4+a6=-6,则当Sn取最小值时,n=________.
(2)已知等比数列{an}公比为q,其前n项和为Sn,若S3,S9,S6成等差数列,则q3等于( )
A.- B.1
C.-或1 D.-1或
思维升华 在进行等差(比)数列项与和的运算时,若条件和结论间的联系不明显,则均可化成关于a1和d(q)的方程组求解,但要注意消元法及整体计算,以减少计算量.
跟踪演练1 (1)(2015·浙江)已知{an}是等差数列,公差d不为零.若a2,a3,a7成等比数列,且2a1+a2=1,则a1=________,d=________.
(2)已知数列{an}是各项均为正数的等比数列,a1+a2=1,a3+a4=2,则log2=________.
热点二 等差数列、等比数列的判定与证明
数列{an}是等差数列或等比数列的证明方法
(1)证明数列{an}是等差数列的两种基本方法:
①利用定义,证明an+1-an(n∈N*)为一常数;
②利用中项性质,即证明2an=an-1+an+1(n≥2).
(2)证明{an}是等比数列的两种基本方法:
①利用定义,证明(n∈N*)为一常数;
②利用等比中项,即证明a=an-1an+1(n≥2).
例2 (2014·大纲全国)数列{an}满足a1=1,a2=2,an+2=2an+1-an+2.
(1)设bn=an+1-an,证明:{bn}是等差数列;
(2)求{an}的通项公式.
思维升华 (1)判断一个数列是等差(比)数列,也可以利用通项公式及前n项和公式,但不能作为证明方法.
(2)=q和a=an-1an+1(n≥2)都是数列{an}为等比数列的必要不充分条件,判断时还要看各项是否为零.
跟踪演练2 (1)(2015·大庆铁人中学月考)已知数列{an}的首项a1=1,且满足an+1=,则an=________________________________________________________________________.
(2)已知数列{an}中,a1=1,an+1=2an+3,则an=________.
热点三 等差数列、等比数列的综合问题
解决等差数列、等比数列的综合问题,要从两个数列的特征入手,理清它们的关系;数列与不等式、函数、方程的交汇问题,可以结合数列的单调性、最值求解.
例3 已知等差数列{an}的公差为-1,且a2+a7+a12=-6.
(1)求数列{an}的通项公式an与前n项和Sn;
(2)将数列{an}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{bn}的前3项,记{bn}的前n项和为Tn,若存在m∈N*,使对任意n∈N*,总有Sn0,a3+a10>0,a6a7<0,则满足Sn>0的最大自然数n的值为( )
A.6 B.7
C.12 D.13
2.已知各项不为0的等差数列{an}满足a4-2a+3a8=0,数列{bn}是等比数列,且b7=a7,则b2b12等于( )
A.1 B.2
C.4 D.8
3.已知各项都为正数的等比数列{an}满足a7=a6+2a5,存在两项am,an使得 =4a1,则+的最小值为( )
A. B.
C. D.
4.已知等比数列{an}中,a4+a6=10,则a1a7+2a3a7+a3a9=________.
提醒:完成作业 专题四 第1讲
二轮专题强化练
专题四
第1讲 等差数列与等比数列
A组 专题通关
1.已知等差数列{an}中,a5=10,则a2+a4+a5+a9的值等于( )
A.52 B.40
C.26 D.20
2.已知等差数列{an}中,a7+a9=16,S11=,则a12的值是( )
A.15 B.30
C.31 D.64
3.(2015·浙江)已知{an}是等差数列,公差d不为零,前n项和是Sn,若a3,a4,a8成等比数列,则( )
A.a1d>0,dS4>0 B.a1d<0,dS4<0
C.a1d>0,dS4<0 D.a1d<0,dS4>0
4.设Sn为等差数列{an}的前n项和,(n+1)Sn6.即实数λ的取值范围为(6,+∞).
跟踪演练3 解 (1)设等比数列{an}的公比为q,
因为S3+a3,S5+a5,S4+a4成等差数列,
所以S5+a5-S3-a3=S4+a4-S5-a5,即4a5=a3,
于是q2==.
又{an}不是递减数列且a1=,
所以q=-.
故等比数列{an}的通项公式为
an=×n-1=(-1)n-1·.
(2)由(1)得Sn=1-n=
当n为奇数时,Sn随n的增大而减小,
所以1Sn-≥S2-=-=-.
综上,对于n∈N*,总有-≤Sn-≤.
所以数列{Tn}最大项的值为,最小项的值为-.
高考押题精练
1.C [∵a1>0,a6a7<0,∴a6>0,a7<0,等差数列的公差小于零,又a3+a10=a1+a12>0,a1+a13=2a7<0,
∴S12>0,S13<0,
∴满足Sn>0的最大自然数n的值为12.]
2.C [设等差数列{an}的公差为d,因为a4-2a+3a8=0,所以a7-3d-2a+3(a7+d)=0,即a=2a7,解得a7=0(舍去)或a7=2,所以b7=a7=2.因为数列{bn}是等比数列,所以b2b12=b=4.]
3.A [由a7=a6+2a5,得a1q6=a1q5+2a1q4,整理有q2-q-2=0,解得q=2或q=-1(与条件中等比数列的各项都为正数矛盾,舍去),又由=4a1,得aman=16a,即a2m+n-2=16a,即有m+n-2=4,亦即m+n=6,那么+=(m+n)(+)
=(++5)≥(2+5)=,
当且仅当=,m+n=6,
即n=2m=4时取得最小值.]
4.100
解析 因为a1a7=a,a3a9=a,a3a7=a4a6,
所以a1a7+2a3a7+a3a9=(a4+a6)2=102=100.
二轮专题强化练答案精析
专题四 数列、推理与证明
第1讲 等差数列与等比数列
1.B [因为a2+a4=2a3,a5+a9=2a7,
所以a2+a4+a5+a9=2(a3+a7)=4a5,而a5=10,
所以a2+a4+a5+a9=4×10=40.故选B.]
2.A [因为a8是a7,a9的等差中项,所以2a8=a7+a9=16⇒a8=8,再由等差数列前n项和的计算公式可得S11===11a6,又因为S11=,所以a6=,则d==,
所以a12=a8+4d=15,
故选A.]
3.B [∵a3,a4,a8成等比数列,
∴(a1+3d)2=(a1+2d)(a1+7d),整理得a1=-d,
∴a1d=-d2<0,又S4=4a1+d=-,
∴dS4=-<0,故选B.]
4.D [由(n+1)Sn0,a7<0,所以数列{an}的前7项为负值,即Sn的最小值是S7.]
5.B [∵{bn}为等差数列,设其公差为d,
由b3=-2,b10=12,
∴7d=b10-b3=12-(-2)=14,∴d=2,
∵b3=-2,∴b1=b3-2d=-2-4=-6,
∴b1+b2+…+b7=7b1+·d
=7×(-6)+21×2=0,
又b1+b2+…+b7=(a2-a1)+(a3-a2)+…+(a8-a7)=a8-a1=a8-3,
∵a8-3=0,
∴a8=3.故选B.]
6.4
解析 由题意得
所以由k∈N*可得k=4.
7.-
解析 由题意,得S1=a1=-1,又由an+1=SnSn+1,得Sn+1-Sn=SnSn+1,所以Sn≠0,所以=1,即-=-1,故数列是以=-1为首项,-1为公差的等差数列,得=-1-(n-1)
=-n,所以Sn=-.
8.2×n-1
解析 由an+1=(a1+a2+…+an) (n∈N*),可得an+1=Sn,所以Sn+1-Sn=Sn,即Sn+1=Sn,由此可知数列{Sn}是一个等比数列,其中首项S1=a1=2,公比为,所以Sn=2×n-1,由此得an=
9.(1)解 设成等差数列的三个正数分别为a-d,a,a+d.
依题意,得a-d+a+a+d=15.
解得a=5.
所以{bn}中的b3,b4,b5依次为7-d,10,18+d.
依题意,有(7-d)(18+d)=100,
解得d=2或d=-13(舍去).
故{bn}的第3项为5,公比为2.
由b3=b1·22,
即5=b1·22,
解得b1=.
所以bn=b1·qn-1=·2n-1=5·2n-3,
即数列{bn}的通项公式为bn=5·2n-3.
(2)证明 由(1)得数列{bn}的前n项和
Sn==5·2n-2-,
即Sn+=5·2n-2.
所以S1+=,==2.
因此{Sn+}是以为首项,2为公比的等比数列.
10.(1)解 当n=2时,4S4+5S2=8S3+S1,
即4+5
=8+1,解得:a4=.
(2)证明 因为4Sn+2+5Sn=8Sn+1+Sn-1(n≥2),所以4Sn+2-4Sn+1+Sn-Sn-1=4Sn+1-4Sn(n≥2),即4an+2+an=4an+1(n≥2),因为4a3+a1=4×+1=6=4a2,
所以4an+2+an=4an+1,
因为=
===,所以数列是以a2-a1=1为首项,公比为的等比数列.
(3)解 由(2)知,数列是以a2-a1=1为首项,公比为的等比数列,所以an+1-an=n-1,即-=4,所以数列是以=2为首项,公差为4的等差数列,
所以=2+(n-1)×4=4n-2,
即an=(4n-2)×n=(2n-1)×n-1,
所以数列{an}的通项公式是an=(2n-1)×n-1.
11.A [由S21=S4 000得a22+a23+…+a4 000=0,
由于a22+a4 000=a23+a3 999=…=2a2 011,
所以a22+a23+…+a4 000
=3 979a2 011=0,
从而a2 011=0,而·=2 011+a2 011·an=2 011.]
12.D [由题意知:a+b=p,ab=q,∵p>0,q>0,∴a>0,b>0.在a,b,-2这三个数的6种排序中,成等差数列的情况有a,b,-2;b,a,-2;-2,a,b;-2,b,a;成等比数列的情况有:a,-2,b;b,-2,a.
∴或解之得:或
∴p=5,q=4,∴p+q=9,故选D.]
13.
解析 令m=1,可得an+1=an,
所以{an}是首项为,公比为的等比数列,所以Sn=
=[1-()n]<,故实数t的最小值为.
14.解 (1)设等比数列{an}的公比为q,
则a1≠0,q≠0.由题意得
即
解得
故数列{an}的通项公式为an
=3×(-2)n-1.
(2)由(1)有Sn=
=1-(-2)n.
假设存在n,使得Sn≥2 013,
则1-(-2)n≥2 013,
即(-2)n≤-2 012.
当n为偶数时,(-2)n>0,上式不成立;
当n为奇数时,(-2)n=-2n≤-2 012,
即2n≥2 012,得n≥11.
综上,存在符合条件的正整数n,且所有这样的n的集合为{n|n=2k+1,k∈N,k≥5}.