- 493.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2018年普通高等学校招生全国统一考试
理科数学
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设,则
A. B. C. D.
2.已知集合,则
A. B.
C. D.
3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:
建设前经济收入构成比例 建设后经济收入构成比例
则下面结论中不正确的是
A.新农村建设后,种植收入减少
B.新农村建设后,其他收入增加了一倍以上
C.新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
4.记为等差数列的前项和.若,,则
A. B. C. D.
5.设函数.若为奇函数,则曲线在点处的切线方程为
A. B. C. D.
6.在中,为边上的中线,为的中点,则
A. B. C. D.
7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为
A. B. C.3 D.2
8.设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=
A.5 B.6 C.7 D.8
9.已知函数.若g(x)存在2个零点,则a的取值范围是
A.[–1,0) B.[0,+∞) C.[–1,+∞) D.[1,+∞)
10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则
A.p1=p2 B.p1=p3
C.p2=p3 D.p1=p2+p3
11.已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若为直角三角形,则|MN|=
A. B.3 C. D.4
12.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.若,满足约束条件,则的最大值为_____________.
14.记为数列的前项和.若,则_____________.
15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)
16.已知函数,则的最小值是_____________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
(一)必考题:60分。
17.(12分)
在平面四边形中,,,,.
(1)求;
(2)若,求.
18.(12分)
如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.
(1)证明:平面平面;
(2)求与平面所成角的正弦值.
19.(12分)
设椭圆的右焦点为,过的直线与交于两点,点的坐标为.
(1)当与轴垂直时,求直线的方程;
(2)设为坐标原点,证明:.
20.(12分)
某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为,求的最大值点.
(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.
(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;
(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?
21.(12分)
已知函数.
(1)讨论的单调性;
(2)若存在两个极值点,证明:.
(二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22.[选修4—4:坐标系与参数方程](10分)
在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求的直角坐标方程;
(2)若与有且仅有三个公共点,求的方程.
23.[选修4—5:不等式选讲](10分)
已知.
(1)当时,求不等式的解集;
(2)若时不等式成立,求的取值范围.
参考答案:
1
2
3
4
5
6
7
8
9
10
11
12
C
B
A
B
D
A
B
D
C
A
B
A
13.6 14. 15.16 16.
17.(12分)
解:(1)在中,由正弦定理得.
由题设知,,所以.
由题设知,,所以.
(2)由题设及(1)知,.
在中,由余弦定理得
.
所以.
18.(12分)
解:(1)由已知可得,BF⊥PF,BF⊥EF,所以BF⊥平面PEF.
又平面ABFD,所以平面PEF⊥平面ABFD.
(2)作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.
以H为坐标原点,的方向为y轴正方向,为单位长,建立如图所示的空间直角坐标系H−xyz.
由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=.又PF=1,EF=2,故PE⊥PF.
可得.
则为平面ABFD的法向量.
设DP与平面ABFD所成角为,则.
所以DP与平面ABFD所成角的正弦值为.
19.(12分)
解:(1)由已知得,l的方程为x=1.
由已知可得,点A的坐标为或.
所以AM的方程为或.
(2)当l与x轴重合时,.
当l与x轴垂直时,OM为AB的垂直平分线,所以.
当l与x轴不重合也不垂直时,设l的方程为,,
则,直线MA,MB的斜率之和为.
由得
.
将代入得
.
所以,.
则.
从而,故MA,MB的倾斜角互补,所以.
综上,.
20.(12分)
解:(1)20件产品中恰有2件不合格品的概率为.因此
.
令,得.当时,;当时,.
所以的最大值点为.
(2)由(1)知,.
(i)令表示余下的180件产品中的不合格品件数,依题意知,,即.
所以.
(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.
由于,故应该对余下的产品作检验.
21.(12分)
解:(1)的定义域为,.
(i)若,则,当且仅当,时,所以在单调递减.
(ii)若,令得,或.
当时,;
当时,.所以在单调递减,在单调递增.
(2)由(1)知,存在两个极值点当且仅当.
由于的两个极值点满足,所以,不妨设,则.由于
,
所以等价于.
设函数,由(1)知,在单调递减,又,从而当时,.
所以,即.
22.[选修4—4:坐标系与参数方程](10分)
解:(1)由,得的直角坐标方程为.
(2)由(1)知是圆心为,半径为的圆由题设知,是过点且关于轴对称的两条射线.记轴右边的射线为,轴左边的射线为.由于在圆的外面,故与
有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点.
当与只有一个公共点时,到所在直线的距离为,所以,故或.
经检验,当时,与没有公共点;当时,与只有一个公共点,与有两个公共点.
当与只有一个公共点时,到所在直线的距离为,所以,故或.
经检验,当时,与没有公共点;当时,与没有公共点.
综上,所求的方程为.
23.[选修4—5:不等式选讲](10分)
解:(1)当时,,即
故不等式的解集为.
(2)当时成立等价于当时成立.
若,则当时;
若,的解集为,所以,故.
综上,的取值范围为.