- 575.00 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
圆锥曲线、导数2018年全国高考数学分类真题(含答案)
一.选择题(共7小题)
1.双曲线﹣y2=1的焦点坐标是( )
A.(﹣,0),(,0) B.(﹣2,0),(2,0) C.(0,﹣),(0,) D.(0,﹣2),(0,2)
2.已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为( )
A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1
3.设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为( )
A. B.2 C. D.
4.已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为( )
A. B. C. D.
5.双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为( )
A.y=±x B.y=±x C.y=±x D.y=±x
6.已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=( )
A. B.3 C.2 D.4
7.设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为( )
A.y=﹣2x B.y=﹣x C.y=2x D.y=x
二.填空题(共6小题)
8.在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为 .
9.已知椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为 ;双曲线N的离心率为 .
10.已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m= 时,点B横坐标的绝对值最大.
11.已知点M(﹣1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若∠AMB=90°,则k=
.
12.曲线y=(ax+1)ex在点(0,1)处的切线的斜率为﹣2,则a= .
13.曲线y=2ln(x+1)在点(0,0)处的切线方程为 .
三.解答题(共13小题)
14.设函数f(x)=[ax2﹣(4a+1)x+4a+3]ex.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a;
(Ⅱ)若f(x)在x=2处取得极小值,求a的取值范围.
15.如图,在平面直角坐标系xOy中,椭圆C过点(),焦点F1(﹣
,0),F2(,0),圆O的直径为F1F2.
(1)求椭圆C及圆O的方程;
(2)设直线l与圆O相切于第一象限内的点P.
①若直线l与椭圆C有且只有一个公共点,求点P的坐标;
②直线l与椭圆C交于A,B两点.若△OAB的面积为,求直线l的方程.
16.如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.
(Ⅰ)设AB中点为M,证明:PM垂直于y轴;
(Ⅱ)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.
17.设椭圆+=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的离心率为,点A的坐标为(b,0),且|FB|•|AB|=6.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l:y=kx(k>
0)与椭圆在第一象限的交点为P,且l与直线AB交于点Q.若=sin∠AOQ(O为原点),求k的值.
18.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).
(1)证明:k<﹣;
(2)设F为C的右焦点,P为C上一点,且++=.证明:||,||,||成等差数列,并求该数列的公差.
19.设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.
(1)求l的方程;
(2)求过点A,B且与C的准线相切的圆的方程.
20.设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).
(1)当l与x轴垂直时,求直线AM的方程;
(2)设O为坐标原点,证明:∠OMA=∠OMB.
21.记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S点”.
(1)证明:函数f(x)=x与g(x)=x2+2x﹣2不存在“S点”;
(2)若函数f(x)=ax2﹣1与g(x)=lnx存在“S点”,求实数a的值;
(3)已知函数f(x)=﹣x2+a,g(x)=.对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.
22.已知函数f(x)=﹣lnx.
(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8﹣8ln2;
(Ⅱ)若a≤3﹣4ln2,证明:对于任意k>0,直线y=kx+
a与曲线y=f(x)有唯一公共点.
23.已知函数f(x)=ax,g(x)=logax,其中a>1.
(Ⅰ)求函数h(x)=f(x)﹣xlna的单调区间;
(Ⅱ)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2,g(x2))处的切线平行,证明x1+g(x2)=;
(Ⅲ)证明当a≥e时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.
24.已知函数f(x)=(2+x+ax2)ln(1+x)﹣2x.
(1)若a=0,证明:当﹣1<x<0时,f(x)<0;当x>0时,f(x)>0;
(2)若x=0是f(x)的极大值点,求a.
25.已知函数f(x)=ex﹣ax2.
(1)若a=1,证明:当x≥0时,f(x)≥1;
(2)若f(x)在(0,+∞)只有一个零点,求a.
26.已知函数f(x)=﹣x+alnx.
(1)讨论f(x)的单调性;
(2)若f(x)存在两个极值点x1,x2,证明:<a﹣2.
圆锥曲线、导数2018年全国高考数学分类真题(含答案)
参考答案与试题解析
一.选择题(共7小题)
1.双曲线﹣y2=1的焦点坐标是( )
A.(﹣,0),(,0) B.(﹣2,0),(2,0) C.(0,﹣),(0,) D.(0,﹣2),(0,2)
【解答】解:∵双曲线方程可得双曲线的焦点在x轴上,且a2=3,b2=1,
由此可得c==2,
∴该双曲线的焦点坐标为(±2,0)
故选:B.
2.已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为( )
A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1
【解答】解:由题意可得图象如图,CD是双曲线的一条渐近线
y=,即bx﹣ay=0,F(c,0),
AC⊥CD,BD⊥CD,FE⊥CD,ACDB是梯形,
F是AB的中点,EF==3,
EF==b,
所以b=3,双曲线=1(a>0,b>0)的离心率为2,可得,
可得:,解得a=.
则双曲线的方程为:﹣=1.
故选:C.
3.设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为( )
A. B.2 C. D.
【解答】解:双曲线C:﹣=1(a>0.b>0)的一条渐近线方程为y=x,
∴点F2到渐近线的距离d==b,即|PF2|=b,
∴|OP|===a,cos∠PF2O=,
∵|PF1|=|OP|,
∴|PF1|=a,
在三角形F1PF2中,由余弦定理可得|PF1|2=|PF2|2+|F1F2|2﹣2|PF2|•|F1F2|COS∠PF2O,
∴6a2=b2+4c2﹣2×b×2c×=4c2﹣3b2=4c2﹣3(c2﹣a2),
即3a2=c2,
即a=c,
∴e==,
故选:C.
4.已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为( )
A. B. C. D.
【解答】解:由题意可知:A(﹣a,0),F1(﹣c,0),F2(c,0),
直线AP的方程为:y=(x+a),
由∠F1F2P=120°,|PF2|=|F1F2|=2c,则P(2c,c),
代入直线AP:c=(2c+a),整理得:a=4c,
∴题意的离心率e==.
故选:D.
5.双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为( )
A.y=±x B.y=±x C.y=±x D.y=±x
【解答】解:∵双曲线的离心率为e==,
则=====,
即双曲线的渐近线方程为y=±x=±x,
故选:A.
6.已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=( )
A. B.3 C.2 D.4
【解答】解:双曲线C:﹣y2=1的渐近线方程为:y=,渐近线的夹角为:60°,不妨设过F(2,0)的直线为:y=,
则:解得M(,),
解得:N(),
则|MN|==3.
故选:B.
7.设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为( )
A.y=﹣2x B.y=﹣x C.y=2x D.y=x
【解答】解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,
可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,
曲线y=f(x)在点(0,0)处的切线的斜率为:1,
则曲线y=f(x)在点(0,0)处的切线方程为:y=x.
故选:D.
二.填空题(共6小题)
8.在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为 2 .
【解答】解:双曲线=1(a>0,b>0)的右焦点F(c,0)到一条渐近线y=x的距离为c,
可得:=b=,
可得,即c=2a,
所以双曲线的离心率为:e=.
故答案为:2.
9.已知椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为 ;双曲线N的离心率为 2 .
【解答】解:椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,
可得椭圆的焦点坐标(c,0),正六边形的一个顶点(,),可得:,可得,可得e4﹣8e2+4=0,e∈(0,1),
解得e=.
同时,双曲线的渐近线的斜率为,即,
可得:,即,
可得双曲线的离心率为e==2.
故答案为:;2.
10.已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m= 5 时,点B横坐标的绝对值最大.
【解答】解:设A(x1,y1),B(x2,y2),
由P(0,1),=2,
可得﹣x1=2x2,1﹣y1=2(y2﹣1),
即有x1=﹣2x2,y1+2y2=3,
又x12+4y12=4m,
即为x22+y12=m,①
x22+4y22=4m,②
①﹣②得(y1﹣2y2)(y1+2y2)=﹣3m,
可得y1﹣2y2=﹣m,
解得y1=,y2=,
则m=x22+()2,
即有x22=m﹣()2==,
即有m=5时,x22有最大值16,
即点B横坐标的绝对值最大.
故答案为:5.
11.已知点M(﹣1,1)和抛物线C:y2
=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若∠AMB=90°,则k=
2 .
【解答】解:∵抛物线C:y2=4x的焦点F(1,0),
∴过A,B两点的直线方程为y=k(x﹣1),
联立可得,k2x2﹣2(2+k2)x+k2=0,
设A(x1,y1),B(x2,y2),
则 x1+x2=,x1x2=1,
∴y1+y2=k(x1+x2﹣2)=,y1y2=k2(x1﹣1)(x2﹣1)=k2[x1x2﹣(x1+x2)+1]=﹣4,
∵M(﹣1,1),
∴=(x1+1,y1﹣1),=(x2+1,y2﹣1),
∵∠AMB=90°=0,∴•=0
∴(x1+1)(x2+1)+(y1﹣1)(y2﹣1)=0,
整理可得,x1x2+(x1+x2)+y1y2﹣(y1+y2)+2=0,
∴1+2+﹣4﹣+2=0,
即k2﹣4k+4=0,
∴k=2.
故答案为:2
12.曲线y=(ax+1)ex在点(0,1)处的切线的斜率为﹣2,则a= ﹣3 .
【解答】解:曲线y=(ax+1)ex,可得y′=aex+(ax+1)ex,
曲线y=(ax+1)ex在点(0,1)处的切线的斜率为﹣2,
可得:a+1=﹣2,解得a=﹣3.
故答案为:﹣3.
13.曲线y=2ln(x+1)在点(0,0)处的切线方程为 y=2x .
【解答】解:∵y=2ln(x+1),
∴y′=,
当x=0时,y′=2,
∴曲线y=2ln(x+1)在点(0,0)处的切线方程为y=2x.
故答案为:y=2x.
三.解答题(共13小题)
14.设函数f(x)=[ax2﹣(4a+1)x+4a+3]ex.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a;
(Ⅱ)若f(x)在x=2处取得极小值,求a的取值范围.
【解答】解:(Ⅰ)函数f(x)=[ax2﹣(4a+1)x+4a+3]ex的导数为
f′(x)=[ax2﹣(2a+1)x+2]ex.
由题意可得曲线y=f(x)在点(1,f(1))处的切线斜率为0,
可得(a﹣2a﹣1+2)e=0,
解得a=1;
(Ⅱ)f(x)的导数为f′(x)=[ax2﹣(2a+1)x+2]ex=(x﹣2)(ax﹣1)ex,
若a=0则x<2时,f′(x)>0,f(x)递增;x>2,f′(x)<0,f(x)递减.
x=2处f(x)取得极大值,不符题意;
若a>0,且a=,则f′(x)=(x﹣2)2ex≥0,f(x)递增,无极值;
若a>,则<2,f(x)在(,2)递减;在(2,+∞),(﹣∞,)递增,
可得f(x)在x=2处取得极小值;
若0<a<,则>2,f(x)在(2,)递减;在(,+∞),(﹣∞,2)递增,
可得f(x)在x=2处取得极大值,不符题意;
若a<0,则<2,f(x)在(,2)递增;在(2,+∞),(﹣∞,)递减,
可得f(x)在x=2处取得极大值,不符题意.
综上可得,a的范围是(,+∞).
15.如图,在平面直角坐标系xOy中,椭圆C过点(),焦点F1(﹣,0),F2(,0),圆O的直径为F1F2.
(1)求椭圆C及圆O的方程;
(2)设直线l与圆O相切于第一象限内的点P.
①若直线l与椭圆C有且只有一个公共点,求点P的坐标;
②直线l与椭圆C交于A,B两点.若△OAB的面积为,求直线l的方程.
【解答】解:(1)由题意可设椭圆方程为,
∵焦点F1(﹣,0),F2(,0),∴.
∵∴,又a2+b2=c2=3,
解得a=2,b=1.
∴椭圆C的方程为:,圆O的方程为:x2+y2=3.
(2)①可知直线l与圆O相切,也与椭圆C,且切点在第一象限,
∴可设直线l的方程为y=kx+m,(k<0,m>0).
由圆心(0,0)到直线l的距离等于圆半径,可得.
由,可得(4k2+1)x2+8kmx+4m2﹣4=0,
△=(8km)2﹣4(4k2+1)(4m2﹣4)=0,
可得m2=4k2+1,∴3k2+3=4k2+1,结合k<0,m>0,解得k=﹣,m=3.
将k=﹣,m=3代入可得,
解得x=,y=1,故点P的坐标为(.
②设A(x1,y1),B(x2,y2),
由⇒k<﹣.
联立直线与椭圆方程得(4k2+1)x2+8kmx+4m2﹣4=0,
|x2﹣x1|==,
O到直线l的距离d=,
|AB|=|x2﹣x1|=,
△OAB的面积为S===,
解得k=﹣,(正值舍去),m=3.
∴y=﹣为所求.
16.如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.
(Ⅰ)设AB中点为M,证明:PM垂直于y轴;
(Ⅱ)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.
【解答】解:(Ⅰ)证明:可设P(m,n),A(,y1),B(,y2),
AB中点为M的坐标为(,),
抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上,
可得()2=4•,
()2=4•,
化简可得y1,y2为关于y的方程y2﹣2ny+8m﹣n2=0的两根,
可得y1+y2=2n,y1y2=8m﹣n2,
可得n=,
则PM垂直于y轴;
(Ⅱ)若P是半椭圆x2+=1(x<0)上的动点,
可得m2+=1,﹣1≤m<0,﹣2<n<2,
由(Ⅰ)可得y1+y2=2n,y1y2=8m﹣n2,
由PM垂直于y轴,可得△PAB面积为S=|PM|•|y1﹣y2|
=(﹣m)•
=[•(4n2﹣16m+2n2)﹣m]•
=(n2﹣4m),
可令t==
=,
可得m=﹣时,t取得最大值;
m=﹣1时,t取得最小值2,
即2≤t≤,
则S=t3在2≤t≤递增,可得S∈[6,],
△PAB面积的取值范围为[6,].
17.设椭圆+=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的离心率为,点A的坐标为(b,0),且|FB|•|AB|=6.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l:y=kx(k>
0)与椭圆在第一象限的交点为P,且l与直线AB交于点Q.若=sin∠AOQ(O为原点),求k的值.
【解答】解:(Ⅰ)设椭圆+=1(a>b>0)的焦距为2c,
由椭圆的离心率为e=,
∴=;
又a2=b2+c2,
∴2a=3b,
由|FB|=a,|AB|=b,且|FB|•|AB|=6;
可得ab=6,
从而解得a=3,b=2,
∴椭圆的方程为+=1;
(Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2),由已知y1>y2>0;
∴|PQ|sin∠AOQ=y1﹣y2;
又|AQ|=,且∠OAB=,
∴|AQ|=y,
由=sin∠AOQ,可得5y1=9y2;
由方程组,消去x,可得y1=,
∴直线AB的方程为x+y﹣2=0;
由方程组,消去x,可得y2=;
由5y1=9y2,可得5(k+1)=3,
两边平方,整理得56k2﹣50k+11=0,
解得k=或k=;
∴k的值为或.
18.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).
(1)证明:k<﹣;
(2)设F为C的右焦点,P为C上一点,且++=.证明:||,||,||成等差数列,并求该数列的公差.
【解答】解:(1)设A(x1,y1),B(x2,y2),
∵线段AB的中点为M(1,m),
∴x1+x2=2,y1+y2=2m
将A,B代入椭圆C:+=1中,可得
,
两式相减可得,3(x1+x2)(x1﹣x2)+4(y1+y2)(y1﹣y2)=0,
即6(x1﹣x2)+8m(y1﹣y2)=0,
∴k==﹣=﹣
点M(1,m)在椭圆内,即,
解得0<m
∴.
(2)证明:设A(x1,y1),B(x2,y2),P(x3,y3),
可得x1+x2=2,
∵++=,F(1,0),∴x1﹣1+x2﹣1+x3﹣1=0,y1+y2+y3=0,
∴x3=1,
∵m>0,可得P在第一象限,故,m=,k=﹣1
由椭圆的焦半径公式得则|FA|=a﹣ex1=2﹣x1,|FB|=2﹣x2,|FP|=2﹣x3=.
则|FA|+|FB|=4﹣,∴|FA|+|FB|=2|FP|,
联立,可得|x1﹣x2|=
所以该数列的公差d满足2d=|x1﹣x2|=,
∴该数列的公差为±.
19.设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.
(1)求l的方程;
(2)求过点A,B且与C的准线相切的圆的方程.
【解答】解:(1)方法一:抛物线C:y2=4x的焦点为F(1,0),当直线的斜率不存在时,|AB|=4,不满足;
设直线AB的方程为:y=k(x﹣1),设A(x1,y1),B(x2,y2),
则,整理得:k2x2﹣2(k2+2)x+k2=0,则x1+x2=,x1x2=1,
由|AB|=x1+x2+p=+2=8,解得:k2=1,则k=1,
∴直线l的方程y=x﹣1;
方法二:抛物线C:y2=4x的焦点为F(1,0),设直线AB的倾斜角为θ,由抛物线的弦长公式|AB|===8,解得:sin2θ=,
∴θ=,则直线的斜率k=1,
∴直线l的方程y=x﹣1;
(2)过A,B分别向准线x=﹣1作垂线,垂足分别为A1,B1,设AB的中点为D,过D作DD1⊥准线l,垂足为D,则|DD1|=(|AA1|+|BB1|)
由抛物线的定义可知:|AA1|=|AF|,|BB1|=|BF|,则r=|DD1|=4,
以AB为直径的圆与x=﹣1相切,且该圆的圆心为AB的中点D,
由(1)可知:x1+x2=6,y1+y2=x1+x2﹣2=4,
则D(3,2),
过点A,B且与C的准线相切的圆的方程(x﹣3)2+(y﹣2)2=16..
20.设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).
(1)当l与x轴垂直时,求直线AM的方程;
(2)设O为坐标原点,证明:∠OMA=∠OMB.
【解答】解:(1)c==1,
∴F(1,0),
∵l与x轴垂直,
∴x=1,
由,解得或,
∴A(1.),或(1,﹣),
∴直线AM的方程为y=﹣x+,y=x﹣,
证明:(2)当l与x轴重合时,∠OMA=∠OMB=0°,
当l与x轴垂直时,OM为AB的垂直平分线,∴∠OMA=∠OMB,
当l与x轴不重合也不垂直时,设l的方程为y=k(x﹣1),k≠0,
A(x1,y1),B(x2,y2),则x1<,x2<,
直线MA,MB的斜率之和为kMA,kMB之和为kMA+kMB=+,
由y1=kx1﹣k,y2=kx2﹣k得kMA+kMB=,
将y=k(x﹣1)代入+y2=1可得(2k2+1)x2﹣4k2x+2k2﹣2=0,
∴x1+x2=,x1x2=,
∴2kx1x2﹣3k(x1+x2)+4k=(4k2﹣4k﹣12k2+8k2+4k)=0
从而kMA+kMB=0,
故MA,MB的倾斜角互补,
∴∠OMA=∠OMB,
综上∠OMA=∠OMB.
21.记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S点”.
(1)证明:函数f(x)=x与g(x)=x2+2x﹣2不存在“S点”;
(2)若函数f(x)=ax2﹣1与g(x)=lnx存在“S点”,求实数a的值;
(3)已知函数f(x)=﹣x2+a,g(x)=.对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.
【解答】解:(1)证明:f′(x)=1,g′(x)=2x+2,
则由定义得,得方程无解,则f(x)=x与g(x)=x2+2x﹣2不存在“S点”;
(2)f′(x)=2ax,g′(x)=,x>0,
由f′(x)=g′(x)得=2ax,得x=,
f()=﹣=g()=﹣lna2,得a=;
(3)f′(x)=﹣2x,g′(x)=,(x≠0),
由f′(x0)=g′(x0),得b=﹣>0,得0<x0<1,
由f(x0)=g(x0),得﹣x02+a==﹣,得a=x02﹣,
令h(x)=x2﹣﹣a=,(a>0,0<x<1),
设m(x)=﹣x3+3x2+ax﹣a,(a>0,0<x<1),
则m(0)=﹣a<0,m(1)=2>0,得m(0)m(1)<0,
又m(x)的图象在(0,1)上连续不断,
则m(x)在(0,1)上有零点,
则h(x)在(0,1)上有零点,
则f(x)与g(x)在区间(0,+∞)内存在“S”点.
22.已知函数f(x)=﹣lnx.
(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8﹣8ln2;
(Ⅱ)若a≤3﹣4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.
【解答】证明:(Ⅰ)∵函数f(x)=﹣lnx,
∴x>0,f′(x)=﹣,
∵f(x)在x=x1,x2(x1≠x2)处导数相等,
∴=﹣,
∵x1≠x2,∴+=,
由基本不等式得:=≥,
∵x1≠x2,∴x1x2>256,
由题意得f(x1)+f(x2)==﹣ln(x1x2),
设g(x)=,则,
∴列表讨论:
x
(0,16)
16
(16,+∞)
g′(x)
﹣
0
+
g(x)
↓
2﹣4ln2
↑
∴g(x)在[256,+∞)上单调递增,
∴g(x1x2)>g(256)=8﹣8ln2,
∴f(x1)+f(x2)>8﹣8ln2.
(Ⅱ)令m=e﹣(|a|+k),n=()2+1,
则f(m)﹣km﹣a>|a|+k﹣k﹣a≥0,
f(n)﹣kn﹣a<n(﹣﹣k)≤n(﹣k)<0,
∴存在x0∈(m,n),使f(x0)=kx0+a,
∴对于任意的a∈R及k∈(0,+∞),直线y=kx+a与曲线y=f(x)有公共点,
由f(x)=kx+a,得k=,
设h(x)=,则h′(x)==,
其中g(x)=﹣lnx,
由(1)知g(x)≥g(16),
又a≤3﹣4ln2,∴﹣g(x)﹣1+a≤﹣g(16)﹣1+a=﹣3+4ln2+a≤0,
∴h′(x)≤0,即函数h(x)在(0,+∞)上单调递减,
∴方程f(x)﹣kx﹣a=0至多有一个实根,
综上,a≤3﹣4ln2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.
23.已知函数f(x)=ax,g(x)=logax,其中a>1.
(Ⅰ)求函数h(x)=f(x)﹣xlna的单调区间;
(Ⅱ)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2,g(x2))处的切线平行,证明x1+g(x2)=;
(Ⅲ)证明当a≥e时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.
【解答】(Ⅰ)解:由已知,h(x)=ax﹣xlna,有h′(x)=axlna﹣lna,
令h′(x)=0,解得x=0.
由a>1,可知当x变化时,h′(x),h(x)的变化情况如下表:
x
(﹣∞,0)
0
(0,+∞)
h′(x)
﹣
0
+
h(x)
↓
极小值
↑
∴函数h(x)的单调减区间为(﹣∞,0),单调递增区间为(0,+∞);
(Ⅱ)证明:由f′(x)=axlna,可得曲线y=f(x)在点(x1,f(x1
))处的切线的斜率为lna.
由g′(x)=,可得曲线y=g(x)在点(x2,g(x2))处的切线的斜率为.
∵这两条切线平行,故有,即,
两边取以a为底数的对数,得logax2+x1+2logalna=0,
∴x1+g(x2)=;
(Ⅲ)证明:曲线y=f(x)在点()处的切线l1:,
曲线y=g(x)在点(x2,logax2)处的切线l2:.
要证明当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线,
只需证明当a≥时,存在x1∈(﹣∞,+∞),x2∈(0,+∞)使得l1与l2重合,
即只需证明当a≥时,方程组
由①得,代入②得:
,③
因此,只需证明当a≥时,关于x1 的方程③存在实数解.
设函数u(x)=,既要证明当a≥时,函数y=u(x)存在零点.
u′(x)=1﹣(lna)2xax,可知x∈(﹣∞,0)时,u′(x)>0;x∈(0,+∞)时,u′(x)单调递减,
又u′(0)=1>0,u′=<0,
故存在唯一的x0,且x0>0,使得u′(x0)=0,即.
由此可得,u(x)在(﹣∞,x0)上单调递增,在(x0,+∞)上单调递减,
u(x)在x=x0处取得极大值u(x0).
∵,故lnlna≥﹣1.
∴=.
下面证明存在实数t,使得u(t)<0,
由(Ⅰ)可得ax≥1+xlna,当时,有
u(x)≤=.
∴存在实数t,使得u(t)<0.
因此,当a≥时,存在x1∈(﹣∞,+∞),使得u(x1)=0.
∴当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.
24.已知函数f(x)=(2+x+ax2)ln(1+x)﹣2x.
(1)若a=0,证明:当﹣1<x<0时,f(x)<0;当x>0时,f(x)>0;
(2)若x=0是f(x)的极大值点,求a.
【解答】(1)证明:当a=0时,f(x)=(2+x)ln(1+x)﹣2x,(x>﹣1).
,,
可得x∈(﹣1,0)时,f″(x)≤0,x∈(0,+∞)时,f″(x)≥0
∴f′(x)在(﹣1,0)递减,在(0,+∞)递增,
∴f′(x)≥f′(0)=0,
∴f(x)=(2+x)ln(1+x)﹣2x在(﹣1,+∞)上单调递增,又f(0)=0.
∴当﹣1<x<0时,f(x)<0;当x>0时,f(x)>0.
(2)解:由f(x)=(2+x+ax2)ln(1+x)﹣2x,得
f′(x)=(1+2ax)ln(1+x)+﹣2=,
令h(x)=ax2﹣x+(1+2ax)(1+x)ln(x+1),
h′(x)=4ax+(4ax+2a+1)ln(x+1).
当a≥0,x>0时,h′(x)>0,h(x)单调递增,
∴h(x)>h(0)=0,即f′(x)>0,
∴f(x)在(0,+∞)上单调递增,故x=0不是f(x)的极大值点,不符合题意.
当a<0时,h″(x)=8a+4aln(x+1)+,
显然h″(x)单调递减,
①令h″(0)=0,解得a=﹣.
∴当﹣1<x<0时,h″(x)>0,当x>0时,h″(x)<0,
∴h′(x)在(﹣1,0)上单调递增,在(0,+∞)上单调递减,
∴h′(x)≤h′(0)=0,
∴h(x)单调递减,又h(0)=0,
∴当﹣1<x<0时,h(x)>0,即f′(x)>0,
当x>0时,h(x)<0,即f′(x)<0,
∴f(x)在(﹣1,0)上单调递增,在(0,+∞)上单调递减,
∴x=0是f(x)的极大值点,符合题意;
②若﹣<a<0,则h″(0)=1+6a>0,h″(e﹣1)=(2a﹣1)(1﹣e)<0,
∴h″(x)=0在(0,+∞)上有唯一一个零点,设为x0,
∴当0<x<x0时,h″(x)>0,h′(x)单调递增,
∴h′(x)>h′(0)=0,即f′(x)>0,
∴f(x)在(0,x0)上单调递增,不符合题意;
③若a<﹣,则h″(0)=1+6a<0,h″(﹣1)=(1﹣2a)e2>0,
∴h″(x)=0在(﹣1,0)上有唯一一个零点,设为x1,
∴当x1<x<0时,h″(x)<0,h′(x)单调递减,
∴h′(x)>h′(0)=0,∴h(x)单调递增,
∴h(x)<h(0)=0,即f′(x)<0,
∴f(x)在(x1,0)上单调递减,不符合题意.
综上,a=﹣.
25.已知函数f(x)=ex﹣ax2.
(1)若a=1,证明:当x≥0时,f(x)≥1;
(2)若f(x)在(0,+∞)只有一个零点,求a.
【解答】证明:(1)当a=1时,函数f(x)=ex﹣x2.
则f′(x)=ex﹣2x,
令g(x)=ex﹣2x,则g′(x)=ex﹣2,
令g′(x)=0,得x=ln2.
当x∈(0,ln2)时,g′(x)<0,当x∈(ln2,+∞)时,g′(x)>0,
∴g(x)≥g(ln2)=eln2﹣2•ln2=2﹣2ln2>0,
∴f(x)在[0,+∞)单调递增,∴f(x)≥f(0)=1,
解:(2),f(x)在(0,+∞)只有一个零点⇔方程ex﹣ax2=0在(0,+∞)只有一个根,
⇔a=在(0,+∞)只有一个根,
即函数y=a与G(x)=的图象在(0,+∞)只有一个交点.
G,
当x∈(0,2)时,G′(x)<0,当∈(2,+∞)时,G′(x)>0,
∴G(x)在(0,2)递减,在(2,+∞)递增,
当→0时,G(x)→+∞,当→+∞时,G(x)→+∞,
∴f(x)在(0,+∞)只有一个零点时,a=G(2)=.
26.已知函数f(x)=﹣x+alnx.
(1)讨论f(x)的单调性;
(2)若f(x)存在两个极值点x1,x2,证明:<a﹣2.
【解答】解:(1)函数的定义域为(0,+∞),
函数的导数f′(x)=﹣﹣1+=﹣,
设g(x)=x2﹣ax+1,
当a≤0时,g(x)>0恒成立,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,
当a>0时,判别式△=a2﹣4,
①当0<a≤2时,△≤0,即g(x)>0,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,
②当a>2时,x,f′(x),f(x)的变化如下表:
x
(0,)
(,)
(,+∞)
f′(x)
﹣
0
+
0
﹣
f(x)
递减
递增
递减
综上当a≤2时,f(x)在(0,+∞)上是减函数,
当a>2时,在(0,),和(,+∞)上是减函数,
则(,)上是增函数.
(2)由(1)知a>2,0<x1<1<x2,x1x2=1,
则f(x1)﹣f(x2)=(x2﹣x1)(1+)+a(lnx1﹣lnx2)=2(x2﹣x1)+a(lnx1﹣lnx2),
则=﹣2+,
则问题转为证明<1即可,
即证明lnx1﹣lnx2>x1﹣x2,
即证2lnx1>x1﹣在(0,1)上恒成立,
设h(x)=2lnx﹣x+,(0<x<1),其中h(1)=0,
求导得h′(x)=﹣1﹣=﹣=﹣<0,
则h(x)在(0,1)上单调递减,
∴h(x)>h(1),即2lnx﹣x+>0,
故2lnx>x﹣,
则<a﹣2成立.