- 419.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2017年高考真题分类汇编(理数):专题5 解析几何
13、(2017·天津)设椭圆 + =1(a>b>0)的左焦点为F,右顶点为A,离心率为 .已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为 .
(Ⅰ)求椭圆的方程和抛物线的方程;
(Ⅱ)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为 ,求直线AP的方程.
14、(2017•北京卷)已知抛物线C:y2=2px过点P(1,1).过点(0, )作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(14分)
(1)求抛物线C的方程,并求其焦点坐标和准线方程;
(2)求证:A为线段BM的中点.
15、(2017•新课标Ⅱ)设O为坐标原点,动点M在椭圆C: +y2=1上,过M做x轴的垂线,垂足为N,点P满足 = .
(Ⅰ)求点P的轨迹方程;
(Ⅱ)设点Q在直线x=﹣3上,且 • =1.证明:过点P且垂直于OQ的直线l过C的左焦点F.
16、(2017•山东)在平面直角坐标系xOy中,椭圆E: =1(a>b>0)的离心率为 ,焦距为2.(14分)
(Ⅰ)求椭圆E的方程.
(Ⅱ)如图,该直线l:y=k1x﹣ 交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的斜率为k2 , 且看k1k2= ,M是线段OC延长线上一点,且|MC|:|AB|=2:3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T,求∠SOT的最大值,并求取得最大值时直线l的斜率.
17、(2017•浙江)如图,已知抛物线x2=y,点A(﹣ , ),B( , ),抛物线上的点P(x,y)(﹣ <x< ),过点B作直线AP的垂线,垂足为Q.
(Ⅰ)求直线AP斜率的取值范围;
(Ⅱ)求|PA|•|PQ|的最大值.
18、(2017•江苏)如图,在平面直角坐标系xOy中,椭圆E: =1(a>b>0)的左、右焦点分别为F1 , F2 , 离心率为 ,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1 , 过点F2作直线PF2的垂线l2 .
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)若直线l1 , l2的交点Q在椭圆E上,求点P的坐标.
19、(2017•新课标Ⅰ卷)已知椭圆C: + =1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1, ),P4(1, )中恰有三点在椭圆C上.(12分)
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.
20、(2017•新课标Ⅲ)已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.
(Ⅰ)证明:坐标原点O在圆M上;
(Ⅱ)设圆M过点P(4,﹣2),求直线l与圆M的方程.
答案解析部分
一、单选题
1、【答案】B
【考点】椭圆的简单性质
【解析】【解答】解:椭圆 + =1,可得a=3,b=2,则c= = ,
所以椭圆的离心率为: = .
故选:B.
【分析】直接利用椭圆的简单性质求解即可.
2、【答案】B
【考点】椭圆的标准方程,椭圆的简单性质,双曲线的标准方程,双曲线的简单性质
【解析】【解答】解:椭圆 + =1的焦点坐标(±3,0),
则双曲线的焦点坐标为(±3,0),可得c=3,
双曲线C: ﹣ =1 (a>0,b>0)的一条渐近线方程为y= x,
可得 ,即 ,可得 = ,解得a=2,b= ,
所求的双曲线方程为: ﹣ =1.
故选:B.
【分析】求出椭圆的焦点坐标,得到双曲线的焦点坐标,利用双曲线的渐近线方程,求出双曲线实半轴与虚半轴的长,即可得到双曲线方程.
3、【答案】B
【考点】斜率的计算公式,两条直线平行的判定,双曲线的简单性质
【解析】【解答】解:设双曲线的左焦点F(﹣c,0),离心率e= = ,c= a,
则双曲线为等轴双曲线,即a=b,
双曲线的渐近线方程为y=± x=±x,
则经过F和P(0,4)两点的直线的斜率k= = ,
则 =1,c=4,则a=b=2 ,
∴双曲线的标准方程: ;
故选B.
【分析】由双曲线的离心率为 ,则双曲线为等轴双曲线,即渐近线方程为y=±x,根据直线的斜率公式,即可求得c的值,求得a和b的值,即可求得双曲线方程.
4、【答案】A
【考点】抛物线的简单性质,直线与圆锥曲线的关系,直线与圆锥曲线的综合问题
【解析】【解答】解:如图,l1⊥l2 , 直线l1与C交于A、B两点,
直线l2与C交于D、E两点,
要使|AB|+|DE|最小,
则A与D,B,E关于x轴对称,即直线DE的斜率为1,
又直线l2过点(1,0),
则直线l2的方程为y=x﹣1,
联立方程组 ,则y2﹣4y﹣4=0,
∴y1+y2=4,y1y2=﹣4,
∴|DE|= •|y1﹣y2|= × =8,
∴|AB|+|DE|的最小值为2|DE|=16,
故选:A
【分析】根据题意可判断当A与D,B,E关于x轴对称,即直线DE的斜率为1,|AB|+|DE|最小,根据弦长公式计算即可.
5、【答案】A
【考点】直线与圆相交的性质,双曲线的简单性质,圆与圆锥曲线的综合
【解析】【解答】解:双曲线C: ﹣ =1(a>0,b>0)的一条渐近线不妨为:bx+ay=0,
圆(x﹣2)2+y2=4的圆心(2,0),半径为:2,
双曲线C: ﹣ =1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,
可得圆心到直线的距离为: = ,
解得: ,可得e2=4,即e=2.
故选:A.
【分析】通过圆的圆心与双曲线的渐近线的距离,列出关系式,然后求解双曲线的离心率即可.
6、【答案】A
【考点】圆的标准方程,直线与圆的位置关系,椭圆的简单性质
【解析】【解答】解:以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,
∴原点到直线的距离 =a,化为:a2=3b2 .
∴椭圆C的离心率e= = = .
故选:A.
【分析】以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,可得原点到直线的距离 =a,化简即可得出.
二、填空题
7、【答案】2
【考点】双曲线的标准方程,双曲线的简单性质
【解析】【解答】解:双曲线x2﹣ =1(m>0)的离心率为 ,
可得: ,
解得m=2.
故答案为:2.
【分析】利用双曲线的离心率,列出方程求和求解m 即可.
8、【答案】[-5 ,1]
【考点】平面向量数量积的运算,直线和圆的方程的应用
【解析】【解答】解:根据题意,设P(x0 , y0),则有x02+y02=50,
=(﹣12﹣x0 , ﹣y0)•(﹣x0 , 6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,
化为:12x0+6y0+30≤0,
即2x0+y0+5≤0,表示直线2x+y+5≤0以及直线下方的区域,
联立 ,解可得x0=﹣5或x0=1,
结合图形分析可得:点P的横坐标x0的取值范围是[﹣5 ,1],
故答案为:[﹣5 ,1].
【分析】根据题意,设P(x0 , y0),由数量积的坐标计算公式化简变形可得2x0+y0+5≤0,分析可得其表示表示直线2x+y+5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.
9、【答案】2
【考点】双曲线的简单性质
【解析】【解答】解:双曲线 ﹣y2=1的右准线:x= ,双曲线渐近线方程为:y= x,
所以P( , ),Q( ,﹣ ),F1(﹣2,0).F2(2,0).
则四边形F1PF2Q的面积是: =2 .
故答案为:2 .
【分析】求出双曲线的准线方程和渐近线方程,得到P,Q坐标,求出焦点坐标,然后求解四边形的面积.
10、【答案】
【考点】双曲线的简单性质
【解析】【解答】解:双曲线C: ﹣ =1(a>0,b>0)的右顶点为A(a,0),
以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.
若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°= ,
可得: = ,即 ,可得离心率为:e= .
故答案为: .
【分析】利用已知条件,转化求解A到渐近线的距离,推出a,c的关系,然后求解双曲线的离心率即可.
11、【答案】6
【考点】抛物线的简单性质
【解析】【解答】解:抛物线C:y2=8x的焦点F(2,0),M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,
可知M的横坐标为:1,则M的纵坐标为: ,
|FN|=2|FM|=2 =6.
故答案为:6.
【分析】求出抛物线的焦点坐标,推出M坐标,然后求解即可.
12、【答案】y=± x
【考点】抛物线的标准方程,抛物线的简单性质,双曲线的标准方程,双曲线的简单性质,圆锥曲线的综合
【解析】【解答】解:把x2=2py(p>0)代入双曲线 =1(a>0,b>0),
可得:a2y2﹣2pb2y+a2b2=0,
∴yA+yB= ,
∵|AF|+|BF|=4|OF|,∴yA+yB+2× =4× ,
∴ =p,
∴ = .
∴该双曲线的渐近线方程为:y=± x.
故答案为:y=± x.
【分析】把x2=2py(p>0)代入双曲线 =1(a>0,b>0),可得:a2y2﹣2pb2y+a2b2=0,利用根与系数的关系、抛物线的定义及其性质即可得出.
三、解答题
13、【答案】(Ⅰ)解:设F的坐标为(﹣c,0).
依题意可得 ,
解得a=1,c= ,p=2,于是b2=a2﹣c2= .
所以,椭圆的方程为x2+ =1,抛物线的方程为y2=4x.
(Ⅱ)解:直线l的方程为x=﹣1,设直线AP的方程为x=my+1(m≠0),
联立方程组 ,解得点P(﹣1,﹣ ),故Q(﹣1, ).
联立方程组 ,消去x,整理得(3m2+4)y2+6my=0,解得y=0,或y=﹣ .
∴B( , ).
∴直线BQ的方程为( ﹣ )(x+1)﹣( )(y﹣ )=0,
令y=0,解得x= ,故D( ,0).
∴|AD|=1﹣ = .
又∵△APD的面积为 ,∴ × = ,
整理得3m2﹣2 |m|+2=0,解得|m|= ,∴m=± .
∴直线AP的方程为3x+ y﹣3=0,或3x﹣ y﹣3=0.
【考点】椭圆的标准方程,椭圆的简单性质,抛物线的简单性质,直线与圆锥曲线的关系,圆锥曲线的综合
【解析】【分析】(Ⅰ)根据椭圆和抛物线的定义、性质列方程组求出a,b,p即可得出方程;(Ⅱ)设AP方程为x=my+1,联立方程组得出B,P,Q三点坐标,从而得出直线BQ的方程,解出D点坐标,根据三角形的面积列方程解出m即可得出答案.
14、【答案】(1)解:(1)∵y2=2px过点P(1,1),
∴1=2p,
解得p= ,
∴y2=x,
∴焦点坐标为( ,0),准线为x=﹣ ,
(2)(2)证明:设过点(0, )的直线方程为
y=kx+ ,M(x1 , y1),N(x2 , y2),
∴直线OP为y=x,直线ON为:y= x,
由题意知A(x1 , x1),B(x1 , ),
由 ,可得k2x2+(k﹣1)x+ =0,
∴x1+x2= ,x1x2=
∴y1+ =kx1+ + =2kx1+ =2kx1+ =
∴A为线段BM的中点.
【考点】抛物线的简单性质,抛物线的应用,直线与圆锥曲线的综合问题
【解析】【分析】(1.)根据抛物线过点P(1,1).代值求出p,即可求出抛物线C的方程,焦点坐标和准线方程;
(2.)设过点(0, )的直线方程为y=kx+ ,M(x1 , y1),N(x2 , y2),根据韦达定理得到x1+x2= ,x1x2= ,根据中点的定义即可证明.
15、【答案】解:(Ⅰ)设M(x0 , y0),由题意可得N(x0 , 0),
设P(x,y),由点P满足 = .
可得(x﹣x0 , y)= (0,y0),
可得x﹣x0=0,y= y0 ,
即有x0=x,y0= ,
代入椭圆方程 +y2=1,可得 + =1,
即有点P的轨迹方程为圆x2+y2=2;
(Ⅱ)证明:设Q(﹣3,m),P( cosα, sinα),(0≤α<2π),
• =1,可得( cosα, sinα)•(﹣3﹣ cosα,m﹣ sinα)=1,
即为﹣3 cosα﹣2cos2α+ msinα﹣2sin2α=1,
解得m= ,
即有Q(﹣3, ),
椭圆 +y2=1的左焦点F(﹣1,0),
由kOQ=﹣ ,
kPF= ,
由kOQ•kPF=﹣1,
可得过点P且垂直于OQ的直线l过C的左焦点F.
【考点】数量积的坐标表达式,同角三角函数间的基本关系,斜率的计算公式,两条直线垂直与倾斜角、斜率的关系,轨迹方程
【解析】【分析】(Ⅰ)设M(x0 , y0),由题意可得N(x0 , 0),设P(x,y),运用向量的坐标运算,结合M满足椭圆方程,化简整理可得P的轨迹方程;
(Ⅱ)设Q(﹣3,m),P( cosα, sinα),(0≤α<2π),运用向量的数量积的坐标表示,可得m,即有Q的坐标,求得椭圆的左焦点坐标,求得OQ,PF的斜率,由两直线垂直的条件:斜率之积为﹣1,即可得证.
16、【答案】解:(Ⅰ)由题意知, ,解得a= ,b=1.
∴椭圆E的方程为 ;
(Ⅱ)设A(x1 , y1),B(x2 , y2),
联立 ,得 .
由题意得△= >0.
, .
∴|AB|= .
由题意可知圆M的半径r为
r= .
由题意设知, ,∴ .
因此直线OC的方程为 .
联立 ,得 .
因此,|OC|= .
由题意可知,sin = .
而 = .
令t= ,则t>1, ∈(0,1),
因此, = ≥1.
当且仅当 ,即t=2时等式成立,此时 .
∴ ,因此 .
∴∠SOT的最大值为 .
综上所述:∠SOT的最大值为 ,取得最大值时直线l的斜率为 .
【考点】函数的值域,椭圆的标准方程,椭圆的简单性质,椭圆的应用,直线与圆锥曲线的关系,直线与圆锥曲线的综合问题
【解析】【分析】(Ⅰ)由题意得关于a,b,c的方程组,求解方程组得a,b的值,则椭圆方程可求;
(Ⅱ)设A(x1 , y1),B(x2 , y2),联立直线方程与椭圆方程,利用根与系数的关系求得A,B的横坐标的和与积,由弦长公式求得|AB|,由题意可知圆M的半径r,则r= .由题意设知 .得到直线OC的方程,与椭圆方程联立,求得C点坐标,可得|OC|,由题意可知,
sin = .转化为关于k1的函数,换元后利用配方法求得∠SOT的最大值为 ,取得最大值时直线l的斜率为 .
17、【答案】解:(Ⅰ)由题可知P(x,x2),﹣ <x< ,
所以kAP= =x﹣ ∈(﹣1,1),
故直线AP斜率的取值范围是:(﹣1,1);
(Ⅱ)由(I)知P(x,x2),﹣ <x< ,
所以 =(﹣ ﹣x, ﹣x2),
设直线AP的斜率为k,则AP:y=kx+ k+ ,BP:y=﹣ x+ + ,
联立直线AP、BP方程可知Q( , ),
故 =( , ),
又因为 =(﹣1﹣k,﹣k2﹣k),
故﹣|PA|•|PQ|= • = + =(1+k)3(k﹣1),
所以|PA|•|PQ|=(1+k)3(1﹣k),
令f(x)=(1+x)3(1﹣x),﹣1<x<1,
则f′(x)=(1+x)2(2﹣4x)=﹣2(1+x)2(2x﹣1),
由于当﹣1<x<﹣ 时f′(x)>0,当 <x<1时f′(x)<0,
故f(x)max=f( )= ,即|PA|•|PQ|的最大值为 .
【考点】利用导数求闭区间上函数的最值,平面向量数量积的运算,斜率的计算公式,抛物线的应用,圆锥曲线的综合
【解析】【分析】(Ⅰ)通过点P在抛物线上可设P(x,x2),利用斜率公式结合﹣ <x< 可得结论;
(Ⅱ)通过(I)知P(x,x2)、﹣ <x< ,设直线AP的斜率为k,联立直线AP、BP方程可知Q点坐标,进而可用k表示出 、 ,计算可知|PA|•|PQ|=(1+k)3(1﹣k),通过令f(x)=(1+x)3(1﹣x),﹣1<x<1,求导结合单调性可得结论.
18、【答案】解:(Ⅰ)由题意可知:椭圆的离心率e= = ,则a=2c,①
椭圆的准线方程x=± ,由2× =8,②
由①②解得:a=2,c=1,
则b2=a2﹣c2=3,
∴椭圆的标准方程: ;
(Ⅱ)设P(x0 , y0),则直线PF2的斜率 = ,
则直线l2的斜率k2=﹣ ,直线l2的方程y=﹣ (x﹣1),
直线PF1的斜率 = ,
则直线l2的斜率k2=﹣ ,直线l2的方程y=﹣ (x+1),
联立 ,解得: ,则Q(﹣x0 , ),
由Q在椭圆上,则y0= ,则y02=x02﹣1,
则 ,解得: ,则 ,
∴P( , )或P(﹣ , )或P( ,﹣ )或P(﹣ ,﹣ ).
【考点】直线的点斜式方程,两条直线的交点坐标,椭圆的简单性质,直线与圆锥曲线的关系
【解析】【分析】(Ⅰ)由椭圆的离心率公式求得a=2c,由椭圆的准线方程x=± ,则2× =8,即可求得a和c的值,则b2=a2﹣c2=3,即可求得椭圆方程;
(Ⅱ)设P点坐标,分别求得直线PF2的斜率及直线PF1的斜率,则即可求得l2及l1的斜率及方程,联立求得Q点坐标,由Q在椭圆方程,求得y02=x02﹣1,联立即可求得P点坐标;
19、【答案】(1)解:根据椭圆的对称性,P3(﹣1, ),P4(1, )两点必在椭圆C上,
又P4的横坐标为1,∴椭圆必不过P1(1,1),
∴P2(0,1),P3(﹣1, ),P4(1, )三点在椭圆C上.
把P2(0,1),P3(﹣1, )代入椭圆C,得:
,解得a2=4,b2=1,
∴椭圆C的方程为 =1.
(2)证明:①当斜率不存在时,设l:x=m,A(m,yA),B(m,﹣yA),
∵直线P2A与直线P2B的斜率的和为﹣1,
∴ = = =﹣1,
解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.
②当斜率存在时,设l:y=kx+b,(b≠1),A(x1 , y1),B(x2 , y2),
联立 ,整理,得(1+4k2)x2+8kbx+4b2﹣4=0,
,x1x2= ,
则 = =
= = =﹣1,又b≠1,
∴b=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,
∴直线l的方程为y=kx﹣2k﹣1,
当x=2时,y=﹣1,
∴l过定点(2,﹣1).
【考点】直线的斜截式方程,椭圆的标准方程,椭圆的简单性质,圆锥曲线的综合
【解析】【分析】(1.)根据椭圆的对称性,得到P2(0,1),P3(﹣1, ),P4(1, )三点在椭圆C上.把P2(0,1),P3(﹣1, )代入椭圆C,求出a2=4,b2=1,由此能求出椭圆C的方程.
(2.)当斜率不存在时,不满足;当斜率存在时,设l:y=kx+b,(b≠1),联立 ,得(1+4k2)x2+8kbx+4b2﹣4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l过定点(2,﹣1).
20、【答案】解:方法一:证明:(Ⅰ)当直线l的斜率不存在时,则A(2,2),B(2,﹣2),
则 =(2,2), =(2,﹣2),则 • =0,
∴ ⊥ ,
则坐标原点O在圆M上;
当直线l的斜率存在,设直线l的方程y=k(x﹣2),设A(x1 , y1),B(x2 , y2),
,整理得:k2x2﹣(4k2+2)x+4k2=0,
则x1x2=4,4x1x2=y12y22=(y1y2)2 , 由y1y2<0,
则y1y2=﹣4,
由 • =x1x2+y1y2=0,
则 ⊥ ,则坐标原点O在圆M上,
综上可知:坐标原点O在圆M上;
方法二:设直线l的方程x=my+2,
,整理得:y2﹣2my﹣4=0,设A(x1 , y1),B(x2 , y2),
则y1y2=﹣4,
则(y1y2)2=4x1x2 , 则x1x2=4,则 • =x1x2+y1y2=0,
则 ⊥ ,则坐标原点O在圆M上,
∴坐标原点O在圆M上;
(Ⅱ)由(Ⅰ)可知:x1x2=4,x1+x2= ,y1+y2= ,y1y2=﹣4,
圆M过点P(4,﹣2),则 =(4﹣x1 , ﹣2﹣y1), =(4﹣x2 , ﹣2﹣y2),
由 • =0,则(4﹣x1)(4﹣x2)+(﹣2﹣y1)(﹣2﹣y2)=0,
整理得:k2+k﹣2=0,解得:k=﹣2,k=1,
当k=﹣2时,直线l的方程为y=﹣2x+4,
则x1+x2= ,y1+y2=﹣1,
则M( ,﹣ ),半径为r=丨MP丨= = ,
∴圆M的方程(x﹣ )2+(y+ )2= .
当直线斜率k=1时,直线l的方程为y=x﹣2,
同理求得M(3,1),则半径为r=丨MP丨= ,
∴圆M的方程为(x﹣3)2+(y﹣1)2=10,
综上可知:直线l的方程为y=﹣2x+4,圆M的方程(x﹣ )2+(y+ )2=
或直线l的方程为y=x﹣2,圆M的方程为(x﹣3)2+(y﹣1)2=10.
【考点】直线的点斜式方程,直线的斜截式方程,圆的标准方程,点与圆的位置关系,直线与圆锥曲线的关系
【解析】【分析】(Ⅰ)方法一:分类讨论,当直线斜率不存在时,求得A和B的坐标,由 • =0,则坐标原点O在圆M上;当直线l斜率存在,代入抛物线方程,利用韦达定理及向量数量积的可得
• =0,则坐标原点O在圆M上;
方法二:设直线l的方程x=my+2,代入椭圆方程,利用韦达定理及向量数量积的坐标运算,即可求得 • =0,则坐标原点O在圆M上;
(Ⅱ)由题意可知: • =0,根据向量数量积的坐标运算,即可求得k的值,求得M点坐标,则半径r=丨MP丨,即可求得圆的方程.