- 375.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2010高考复习数学亮点试题(解析几何部分)
李春龙(江苏省扬州市第一中学)
【题目】1. 如图,直角坐标系中,一直角三角形,,、在轴上且关于原点对称,在边上,,三角形ABC的周长为12.若一双曲线以、为焦点,且经过、两点.
(1) 求双曲线的方程;
(2) 若一过点(为非零常数)的直线与双曲线相交于不同于双曲线顶点的两点、,且,问在轴上是否存在定点,使?若存在,求出所有这样定点的坐标;若不存在,请说明理由.
【解析提示】(1) 设双曲线的方程为,则.
由,得,即.
∴ 解之得,∴.
∴双曲线的方程为.
(2) 设在轴上存在定点,使.
设直线的方程为,.
由,得.即 ①
∵,
,
∴.
即. ②
把①代入②,得 ③
把代入并整理得
其中且,即且.
.代入③,得 ,
化简得 .
当时,上式恒成立.
因此,在轴上存在定点,使.
【亮点、新颖原因】本题是一道典型的解析几何综合题,能够强化学生对双曲线有关知识的理解,本题主要训练学生对平面向量的概念和有关垂直性质的应用;双曲线的定义、标准方程和有关性质等基础知识的认识,训练存在性问题的求法和应用,以及综合运用数学知识解决问题的能力.
【题目】2. 已知椭圆的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足
(Ⅰ)设为点P的横坐标,证明;
(Ⅱ)求点T的轨迹C的方程;
(Ⅲ)试问:在点T的轨迹C上,是否存在点M,
使△F1MF2的面积S=若存在,求∠F1MF2
的正切值;若不存在,请说明理由. w.w.w.k.s.5.u.c.o.m
(Ⅰ)证法一:设点P的坐标为
由P在椭圆上,得
由,所以
证法二:设点P的坐标为记
则
由
证法三:设点P的坐标为椭圆的左准线方程为
由椭圆第二定义得,即
由,所以
(Ⅱ)解法一:设点T的坐标为
当时,点(,0)和点(-,0)在轨迹上.
当|时,由,得.
又,所以T为线段F2Q的中点.
在△QF1F2中,,所以有
综上所述,点T的轨迹C的方程是
解法二:设点T的坐标为 当时,点(,0)和点(-,0)在轨迹上.
当|时,由,得.
又,所以T为线段F2Q的中点.
设点Q的坐标为(),则 因此 ①
由得 ② 将①代入②,可得
综上所述,点T的轨迹C的方程是
③
④
(Ⅲ)解法一:C上存在点M()使S=的充要条件是
由③得,由④得 所以,当时,存在点M,使S=;
当时,不存在满足条件的点M.
当时,,
由,
,
,得
解法二:C上存在点M()使S=的充要条件是
③
④
由④得 上式代入③得
于是,当时,存在点M,使S=;
当时,不存在满足条件的点M
当时,记,
由知,所以
【亮点、新颖原因】
本题是一道典型的解析几何综合题,能够强化学生对椭圆有关知识的理解,本题主要训练学生对平面向量的概念,椭圆的定义、标准方程和有关性质等基础知识的认识,训练轨迹方程的求法和应用,以及综合运用数学知识解决问题的能力.
【题目】3. 如图,P是抛物线C:y=x2上一点,直线l过点P且与抛物线C交于另一点Q.
(Ⅰ)若直线l与过点P的切线垂直,求线段PQ中点M的轨迹方程;
(Ⅱ)若直线l不过原点且与x轴交于点S,与y轴交于点T,试求的取值范围.
【解析提示】:(Ⅰ)设P(x1,y1),Q(x2,y2),M(x0,y0),依题意x1≠0,y1>0,y2>0.
由y=x2, ① 得y'=x. ∴过点P的切线的斜率k切= x1,
∴直线l的斜率kl=-= -,∴直线l的方程为y-x12=- (x-x1),②
方法一:联立①②消去y并整理,得x2+x-x12-2=0.
∵M是PQ的中点
x0== -,
∴ y0=x12-(x0-x1). 消去x1,得y0=x02++1(x0≠0),
∴PQ中点M的轨迹方程为y=x2++1(x≠0).
方法二:
由y1=x12,y2=x22,x0=,
得y1-y2=x12-x22=(x1+x2)(x1-x2)=x0(x1-x2),
则x0==kl=-,∴x1=-,
将上式代入②并整理,得y0=x02++1(x0≠0),
∴PQ中点M的轨迹方程为y=x2++1(x≠0).
(Ⅱ)设直线l:y=kx+b,依题意k≠0,b≠0,则T(0,b).
分别过P、Q作PP'⊥x轴,QQ'⊥y轴,垂足分别为P'、Q',则
.
y=x2
由 y=kx+b 消去x,得y2-2(k2+b)y+b2=0. ③
则 y1+y2=2(k2+b), y1y2=b2.
方法一:
∴|b|()≥2|b|=2|b|=2.
∵y1、y2可取一切不相等的正数,
∴的取值范围是(2,+).
方法二:
∴=|b|=|b|.
当b>0时,=b==+2>2;
当b<0时,=-b=.
又由方程③有两个相异实根,得△=4(k2+b)2-4b2=4k2(k2+2b)>0,
于是k2+2b>0,即k2>-2b.
所以>=2.
∵当b>0时,可取一切正数,
∴的取值范围是(2,+).
方法三:
由P、Q、T三点共线得kTQ=KTP, 即=.
则x1y2-bx1=x2y1-bx2,即b(x2-x1)=(x2y1-x1y2).
于是b==-x1x2.
∴===+≥2.
∵可取一切不等于1的正数,
∴的取值范围是(2,+).
【亮点、新颖原因】本题是一道典型的解析几何综合题,能够强化学生对抛物线有关知识的理解,也能够训练学生对二直线垂直时斜率的关系、不等式、导数的几何意义之一是过某点切线的斜率等基础知识的认识,训练学生求轨迹方程的基本方法,平面解析几何的基本思想和综合解题能力以及一题多解。