- 137.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
质量检测(七)
测试内容:统计、统计案例与概率
(时间:120分钟 满分:150分)
一、选择题(本大题共12小题,每小题5分,共60分)
1.一个容量为100的样本,其频数分布表如下
组别
(0,10]
(10,20]
(20,30]
(30,40]
(40,50]
(50,60]
(60,70]
频数
12
13
24
15
16
13
7
则样本数据落在(10,40]上的频率为 ( )
A.0.13 B.0.39
C.0.52 D.0.64
解析:由题意可知样本在(10,40]上的频数是:13+24+15=52,由频率=频数÷总数,可得样本数据落在(10,40]上的频率是0.52.
答案:C
2.为了了解我校今年报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,第2小组的频数为12,则报考飞行员的学生人数是 ( )
A.50 B.47
C.48 D.52
解析:依题意得,前3个小组的频率总和是1-(0.037 5+0.012 5)×5=0.75,则第2小组的频率是0.75×=0.25,故报考飞行员的学生人数是12÷0.25=48.
答案:C
3.已知某射击运动员,每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器算出0到9之间取整数值的随机数,指定0,1,表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:
5 727 0 293 7 140 9 857 0 347 4 373 8 636 9 647 1 417 4 698 0 371 6 233 2 616 8 045 6 011 3 661 9 597 7 424 6 710 4 281
据此估计,该射击运动员射击4次至少击中3次的概率为 ( )
A.0.85 B.0.819 2
C.0.8 D.0.75
解析:由随机数表可以看出,20次射击中至少击中3次的有15次,故所求概率为P==0.75.
答案:D
4.(2012年山东)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据每个都加2后所得数据,则A,B两样本的下列数字特征对应相同的是 ( )
A.众数 B.平均数
C.中位数 D.标准差
解析:由众数、平均数、中位数、标准差的定义知:A样本中各数据都加2后,只有标准差不改变,故选D.
答案:D
5.(2012年哈尔滨模拟)一个样本容量为10的样本数据,它们组成一个公差不为0的等差数列{an},若a3=8,且a1,a3,a7成等比数列,则此样本的平均数和中位数分别是 ( )
A.13,12 B.13,13
C.12,13 D.13,14
解析:设等差数列{an}的公差为d(d≠0),a3=8,a1a7=(a3)2=64,(8-2d)(8+4d)=64,(4-d)(2+d)=8,2d-d2=0,又d≠0,故d=2,故样本数据为4、6、8、10、12、14、16、18、20、22,样本的平均数为=13,中位数为=13,故选B.
答案:B
6.(2012年辽宁大连四所重点中学联考)一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了8次试验,收集数据如下:
零件数x(个)
10
20
30
40
50
60
70
80
加工时间y(min)
62
68
75
81
89
95
102
108
设回归方程为=x+,则点(,)在直线x+45y-10=0的 ( )
A.左上方 B.左下方
C.右上方 D.右下方
解析:依题意得,=×(10+20+30+40+50+60+70+80)=45,=
×(62+68+75+81+89+95+102+108)=85.因为样本中心点(,)在回归直线上,所以85=45+,所以a+45b=85>10,因此点(,)必位于直线x+45y-10=0的右上方,选C.
答案:C
7.(2012年宝鸡模拟)为了了解高三学生的数学成绩,抽取了某班60名学生,将所得数据整理后,画出其频率分布直方图(如图),已知从左到右各长方形高的比为2∶3∶5∶6∶3∶1,则该班学生数学成绩在(80,100)之间的人数是
( )
A.32 B.27
C.24 D.33
解析:位于(80,100)之间人数所占的比例为
=,
∴共有人数×60=33人.
答案:D
8.已知P是△ABC所在平面内一点,++2=0,现将一粒黄豆随机撒在△PBC内,则黄豆落在△PBC内的概率是 ( )
A. B.
C. D.
解析:由题意可知,点P位于BC边的中线的中点处.
记黄豆落在△PBC内为事件D,则P(D)==.
答案:D
9.(2012年豫南九校联考)从-=1(其中m,n∈{-1,2,3})所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,则此方程是焦点在x轴上的双曲线方程的概率为 ( )
A. B.
C. D.
解析:当m=-1,n=-1时,表示焦点在y轴上的双曲线;当m=2,n=2,3时,表示焦点在x轴上的双曲线;
当m=3,n=2,3时,表示焦点在x轴上的双曲线;当m=2,n=-1时,表示椭圆;
当m=3,n=-1时,表示椭圆.
∴方程是焦点在x轴上的双曲线方程的概率为P=.
答案:B
10.(2012年汉中模拟)在△ABC中,角A、B、C所对的边分别是a、b、c,A=30°,若将一枚质地均匀的正方体骰子先后抛掷两次,所得的点数分别为a、b,则满足条件的三角形有两个解的概率是 ( )
A. B.
C. D.
解析:要使△ABC有两个解,需满足的条件是
因为A=30°,所以,满足此条件的a,b的值有b=3,a=2;b=4,a=3;b=5,a=3;b=5,a=4;b=6,a=4;b=6,a=5,共6种情况,所以满足条件的三角形有两个解的概率是=.
答案:A
11.(2012年石家庄名校联考)下列命题:①若函数f(x)=x2-2x+3,x∈[-2,0]的最小值为2;②线性回归方程=x+对应的直线至少经过其样本数据点(x1,y1),(x2,y2),…,(xn,yn)中的一个点;③命题p:∃x∈R,使得x2+x+1<0,则綈p:∀x∈R,均有x2+x+1≥0;④若x1,x2,…,x10的平均数为a,方差为b,则x1+5,x2+5,…,x10+5的平均数为a+5,方差为b+25.其中,错误命题的个数为 ( )
A.0 B.1
C.2 D.3
解析:因为f(x)=(x-1)2+2,此函数在[-2,0]上为减函数,所以x=0时,f(x)最小为3,①错误;线性回归方程对应的直线不一定经过样本点,所以②错误;特称命题的否定为全称命题,③正确;若x1,x2,…,x10的平均数为a,方差为b,则x1+5,x2+5,…,x10+5的平均数为a+5,方差为b,所以④错误,综上所述,错误命题为①、②、④,故选D.
答案:D
12.关于统计数据的分析,有以下几个结论:
①一组数不可能有两个众数;
②将一组数据中的每个数据都减去同一个数后,方差没有变化;
③调查剧院中观众观看感受时,从50排(每排人数相同)中任意抽取一排的人进行调查,属于分层抽样;
④一组数据的方差一定是正数;
⑤如图是随机抽取的200辆汽车通过某一段公路时的时速分布直方图,根据这个直方图,可以得到时速在[50,60)的汽车大约是60辆.
则这5种说法中错误的个数是 ( )
A.2 B.3
C.4 D.5
解析:一组数中可以有两个众数,故①错;根据方差的计算可知②正确;③属于简单随机抽样,错误;④错误,因为方差可以是零;⑤正确.故选B.
答案:B
二、填空题(本大题共4小题,每小题5分,共20分)
13.(2012年福建)一支田径队有男女运动员98人,其中男运动员有56人.按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是________.
解析:男女运动员人数比例为:
=,
分层抽样中男女人数比例不变,则女运动员人数为
28×=12.
故应抽取女运动员人数为12.
答案:12
14.(2013届宁夏银川月考)已知圆C:x2+y2=12,直线l:4x+3y=25.
(1)圆C的圆心到直线l的距离为________;
(2)圆C上任意一点A到直线l的距离小于2的概率为________.
解析:(1)圆心坐标为(0,0),圆心到直线4x+3y=25的距离d==5.
(2)如图l′∥l,且O到l′的距离为3,sin∠ODE==,所以∠ODE=60°,从而∠BOD=60°,点A应在劣弧上,所以满足条件的概率为.
答案:5
15.已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a、b的取值分别是____.
解析:∵中位数为10.5,
∴=10.5,a+b=21,
∵==10,
∴s2=[(2-10)2+(3-10)2+(3-10)2+(7-10)2+(a-10)2+(b-10)2+
(12-10)2+(13.7-10)2+(18.3-10)2+(20-10)2].
令y=(a-10)2+(b-10)2
=2a2-42a+221
=2(a-)2+.
当a=10.5时,y取最小值,方差s2也取最小值.
∴a=10.5,b=10.5.
答案:10.5、10.5
16.(2012年银川质检)某市要对两千多名出租车司机的年龄进行调查,现从中随机取出n名司机,已知抽到的司机年龄都在[20,45)岁,根据调查结果得出司机的年龄情况的部分频率分布直方图如图所示,则由该图可以估计年龄在[25,30)岁的司机约占该市司机总数的________.
解析:由频率分布直方图可知年龄在[25,30)岁的频率是1-(0.01+0.07+0.06+0.02)×5=0.2,故可以估计年龄在[25,30)岁的司机约占该市司机总数的20%.
答案:20%
三、解答题(本大题共6小题,共70分,17题10分,18~22题,每题12分.解答应写出文字说明,证明过程或演算步骤.)
17.(2012年湖南)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100名顾客的相关数据,如下表所示.
一次购物量
1至4件
5至8件
9至12件
13至16件
17件及以上
顾客数(人)
x
30
25
y
10
结算时间(分钟/人)
1
1.5
2
2.5
3
已知这100位顾客中一次购物量超过8件的顾客占55%.
(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;
(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)
解:(1)由已知得25+y+10=55,x+30=45,
所以x=15,y=20.
该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为
=1.9(分钟).
(2)记A为事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2,A3分别表示事件“该顾客一次购物的结算时间为1分钟”,“该顾客一次购物的结算时间为1.5分钟”,“该顾客一次购物的结算时间为2分钟”.将频率视为概率得
P(A1)==,
P(A2)==,
P(A3)==.
因为A=A1∪A2∪A3,且A1,A2,A3是互斥事件,所以
P(A)=P(A1∪A2∪A3)=P(A1)+P(A2)+P(A3)
=++=.
故一位顾客一次购物的结算时间不超过2分钟的概率为.
18.关于某设备的使用年限x和所支出的维修费用y(万元)有如下的统计资料:
使用年限x
2
3
4
5
6
维修费用y
2.2
3.8
5.5
6.5
7.0
(1)请画出表中数据的散点图;
(2)求线性回归方程=x+.
解:(1)由图中所给数据,画散点图如图所示.
(2)==4,
==5,
=22+32+42+52+62=90,
iyi=2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3,
∴===1.23,
=-=5-1.23×4=0.08,
∴线性回归方程为=1.23x+0.08.
19.(2012年江西)如图,从A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点.
(1)求这3点与原点O恰好是正三棱锥的四个顶点的概率;
(2)求这3点与原点O共面的概率.
解:从这6个点中随机选取3个点的所有可能结果是:
x轴上取2个点的有A1A2B1,A1A2B2,A1A2C1,A1A2C2,共4种;
y轴上取2个点的有B1B2A1,B1B2A2,B1B2C1,B1B2C2,共4种;
z轴上取2个点的有C1C2A1,C1C2A2,C1C2B1,C1C2B2,共4种.
所选取的3个点在不同坐标轴上有A1B1C1,A1B1C2,A1B2C1,A1B2C2,A2B1C1,A2B1C2,A2B2C1,A2B2C2,共8种.因此,从这6个点中随机选取3个点的所有可能结果共20种.
(1)选取的这3个点与原点O恰好是正三棱锥的四个顶点的所有可能结果有:A1B1C1,A2B2C2,共2种.
因此,这3个点与原点O恰好是正三棱锥的四个顶点的概率为P1==.
(2)选取的这3个点与原点O共面的所有可能结果有:A1A2B1,A1A2B2,A1A2C1,A1A2C2,B1B2A1,B1B2A2,B1B2C1,B1B2C2,C1C2A1,C1C2A2,C1C2B1,C1C2B2,共12种,因此,这3个点与原点O共面的概率为P2==.
20.(2012年山东)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.
(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;
(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.
解:(1)标号为1,2,3的三张红色卡片分别记为A,B,C,标号为1,2的两张蓝色卡片分别记为D,E,从五张卡片中任取两张的所有可能的结果为:
(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共10种.
由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.
从五张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A,D),(A,E),(B,D),共3种.
所以这两张卡片颜色不同且它们的标号之和小于4的概率为.
(2)记F为标号为0的绿色卡片,从六张卡片中任取两张的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.
由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.
从六张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A,D),(A,E),(B,D),(A,F),(B,F),(C,F),(D,F),(E,F),共8种.
所以这两张卡片颜色不同且它们的标号之和小于4的概率为.
21.(2012年石家庄质检)某工科院校对A,B两个专业的男女生人数进行调查,得到如下的列联表:
专业A
专业B
总计
女生
12
4
16
男生
38
46
84
总计
50
50
100
(1)能否在犯错误的概率不超过0.05的前提下,认为工科院校中“性别”与“专业”有关系呢?
(2)从专业B的女生中随机抽取2名,代表该专业参加文艺汇演,求女生甲和女生乙至少一人参加的概率.
注:K2=
P(K2≥k0)
0.25
0.15
0.10
0.05
0.025
k0
1.323
2.072
2.706
3.841
5.024
解:(1)根据列联表中的数据
K2=≈4.762,
由于4.762>3.841,因此在犯错误的概率不超过0.05的前提下认为工科院校中“性别”与“专业”有关系.
(2)设4名女生分别为甲、乙、丙、丁,从4名女生中选取2名的基本事件:(甲,乙),(甲,丙),(甲,丁),(乙,丙),(乙,丁),(丙,丁),共6个,女生甲和女生乙至少一人参加的基本事件:(甲,乙),(甲,丙),(甲,丁),(乙,丙),(乙,丁),共5个,所以女生甲和女生乙至少一人参加的概率P=.
22.(2012年北京)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):
“厨余垃圾”箱
“可回收物”箱
“其他垃圾”箱
厨余垃圾
400
100
100
可回收物
30
240
30
其他垃圾
20
20
60
(1)试估计厨余垃圾投放正确的概率;
(2)试估计生活垃圾投放错误的概率;
(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.
(注:s2=[(x1-)2+(x2-)2+…+(xn-)2],其中为数据x1,x2,…,xn的平均数)
解:(1)厨余垃圾投放正确的概率约为
==.
(2)设生活垃圾投放错误为事件A,则事件表示生活垃圾投放正确.
事件的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P()约为=0.7,所以P(A)约为1-0.7=0.3.
(3)当a=600,b=c=0时,s2取得最大值.
因为=(a+b+c)=200,
所以s2=[(600-200)2+(0-200)2+(0-200)2]
=80 000.