- 119.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课时作业(五)
1.若P在Q的北偏东44°50′,则Q在P的( )
A.东偏北45°10′ B.东偏北45°50′
C.南偏西44°50′ D.西偏南45°50′
答案 C
2.在某次测量中,在A处测得同一方向的B点的仰角为60°,C点的俯角为70°,则∠BAC等于( )
A.10° B.50°
C.120° D.130°
答案 D
3.一只船速为2 米/秒的小船在水流速度为2米/秒的河水中行驶,假设两岸平行,要想使过河时间最短,则实际行驶方向与水流方向的夹角为( )
A.120° B.90°
C.60° D.30°
答案 B
4.江岸边有一炮台高30 m,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距( )
A.10 m B.100 m
C.20 m D.30 m
答案 D
解析 设炮台顶部为A,两条船分别为B、C,炮台底部为D,可知∠BAD=45°,∠CAD=60°,∠BDC=30°,AD=30.
分别在Rt△ADB,Rt△ADC中,
求得DB=30,DC=30.
在△DBC中,由余弦定理,得
BC2=DB2+DC2-2DB·DCcos30°,解得BC=30.
5.某人向正东方向走x km后,他向右转150°,然后朝新方向走3 km,结果他离出发点恰好 km,那么x的值为( )
A. B.2
C.2或 D.3
答案 C
6.两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为( )
A.a km B.a km
C.a km D.2a km
答案 B
7.海上有A、B、C三个小岛,已知A、B相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B、C的距离是( )
A.10 海里 B. 海里
C.5 海里 D.5 海里
答案 D
8.
如图所示,设A、B两点在河的两岸,一测量者在A所在的河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算A、B两点的距离为( )
A.50 m B.50 m
C.25 m D. m
答案 A
9.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时( )
A.5 海里 B.5 海里
C.10 海里 D.10 海里
答案 D
10.已知船A在灯塔C北偏东85°且到C的距离为2 km,船B在灯塔C西偏北25°且到C的距离为 km,则A,B两船的距离为( )
A.2 km B.3 km
C. km D. km
答案 D
11.一船以24 km/h的速度向正北方向航行,在点A处望见灯塔S在船的北偏东30°方向上,15 min后到点B
处望见灯塔在船的北偏东65°方向上,则船在点B时与灯塔S的距离是________km.(精确到0.1 km)
答案 5.2
12.如图,为了测量河的宽度,在一岸边选定两点A,B,望对岸的标记物C,测得∠CAB=30°,∠CBA=75°,AB=120 m,则河的宽度是________m.
答案 60
13.已知船在A处测得它的南偏东30°的海面上有一灯塔C,船以每小时30海里的速度向东南方向航行半小时后到达B点,在B处看到灯塔在船的正西方向,问这时船和灯塔相距________海里.
答案
14.A、B是海平面上的两个点,相距800 m,在A点测得山顶C的仰角为45°,∠BAD=120°,又在B点测得∠ABD=45°,其中D是点C到水平面的垂足,求山高CD.
解析
如图,由于CD⊥平面ABD,∠CAD=45°,所以CD=AD.
因此,只需在△ABD中求出AD即可.
在△ABD中,∠BDA=180°-45°-120°=15°.
由=,得
AD=
==800(+1)(m).
∵CD⊥平面ABD,∠CAD=45°,
∴CD=AD=800(+1)≈2 186(m).
答:山高CD为2 186 m.
15.如图所示,海中小岛A周围38海里内有暗礁,一船正向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后,在C处测得小岛在船的南偏东45°,如果此船不改变航向,继续向南航行,有无触礁的危险?
思路分析 船继续向南航行,有无触礁的危险,取决于A到直线BC的距离与38海里的大小,于是我们只要先求出AC或AB的大小,再计算出A到BC的距离,将它与38海里比较大小即可.
解析 在△ABC中,BC=30,B=30°,∠ACB=135°,
∴∠BAC=15°.
由正弦定理=,即=.
∴AC=60cos15°=60cos(45°-30°)
=60(cos45°cos30°+sin45°sin30°)=15(+).
∴A到BC的距离d=ACsin45°=15(+1)
≈40.98海里>38海里,所以继续向南航行,没有触礁危险.
1.一船以4 km/h的速度沿着与水流方向成120°的方向航行,已知河水流速为2 km/h,则经过 h后,该船实际航行为( )
A.2 km B.6 km
C. km D.8 km
答案 B
2.
如图,为了测量正在海面匀速行驶的某航船的速度,在海岸上选取距离1千米的两个观察点C、D,在某天10∶00观察到该航船在A处,此时测得∠ADC=30°,2分钟后该船行驶至B处,此时测得∠ACB=60°,∠BCD=45°,∠ADB=60°,则船速为________(千米/分钟).
答案
解析 在△BCD中,
∠BDC=30°+60°=90°,CD=1,∠BCD=45°,
∴BC=.
在△ACD中,∠CAD=180°-(60°+45°+30°)=45°,
∴=,AC=.
在△ABC中,
AB2=AC2+BC2-2AC×BC×cos60°=,
∴AB=,∴船速为= 千米/分钟.
3.
如图,A,B是海面上位于东西方向相距5(3+)海里的两个观测点.现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距20 海里的C点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?
答案 救船到达D点需要1小时.
解析 由题意知AB=5(3+)(海里),∠DBA=90°-60°=30°,∠DAB=90°-45°=45°,
∴∠ADB=180°-(45°+30°)=105°.
在△DAB中,由正弦定理,得=.
∴DB==
==
=10(海里).
又∠DBC=∠DBA+∠ABC=30°+(90°-60°)=60°,BC=20(海里),
在△DBC中,由余弦定理,得
CD2=BD2+BC2-2BD·BC·cos∠DBC
=300+1 200-2×10×20×=900.
∴CD=30(海里),则需要的时间t==1(小时).
答:救援船到达D点需要1小时.
4.
如图所示,a是海面上一条南北向的海防警戒线,在a上点A处有一个水声监测点,另两个监测点B、C分别在A的正东方20 km处和54 km处.某时刻,监测点B收到发自静止目标P的一个声波,8 s后监测点A、20 s后监测点C相继收到这一信号.在当时的气象条件下,声波在水中的传播速度是1.5 km/s.
(1)设A到P的距离为x km,用x表示B,C到P的距离,并求x的值;
(2)求静止目标P到海防警戒线a的距离.(结果精确到0.01 km)
答案 (1)PB=x-12 km,PC=18+x km
(2)17.71 km