- 1.33 MB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2018年-2008年江苏高考解析几何题(共20题)
说明:解析几何题填空题选自最后4题,解答题考在17题或18题,是解答题的第三、四两题之一,是中档题,是学生取得优分必须要突破的题型,必须重视。做错的认真订正,并在可能的情况下多练。
1. 在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为直径的圆C与直线l交
于另一点D.若,则点A的横坐标为 .
2. 如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.
(1)求椭圆C及圆O的方程;
(2)设直线l与圆O相切于第一象限内的点P.
①若直线l与椭圆C有且只有一个公共点,求点P的坐标;
②直线l与椭圆C交于两点.若的面积为,求直线l的方程.
3. 在平面直角坐标系中,点在圆上,若则点的横坐标的取
值范围是 .
4.如图,在平面直角坐标系中,椭圆的左、右焦点分别为, ,离心率为,两准线之间的距离为8.点在椭圆上,且位于第一象限,过点作 直线的垂线,过点作直线的垂线.
(1)求椭圆的标准方程;
(2)若直线的交点在椭圆上,求点的坐标.
5.如图,在平面直角坐标系中,已知以为圆心的圆及其上一点
(1)设圆与轴相切,与圆外切,且圆心在直线上,求圆的标准方程;
(2)设平行于的直线与圆相交于两点,且,求直线的方程;
(3)设点满足:存在圆上的两点和,使得,求实数的取值范围。
6.在平面直角坐标系中,为双曲线右支上的一个动点。若点到直线的距离大于c恒成立,则是实数c的最大值为
7.如图,在平面直角坐标系xOy中,已知椭圆的离心率为,且右焦点F到左准线l的距离为3.
(1)求椭圆的标准方程;
(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.
8.如图在平面直角坐标系中,分别是椭圆的左右焦点,顶点的坐标是,连接并延长交椭圆于点,过点作轴的垂线交椭圆于另一点,连接。
(1)若点的坐标为,且,求椭圆的方程;
(2)若,求椭圆离心率的值。
9.在平面直角坐标系中,椭圆的标准方程为,右焦点为,右准线为,短轴的一个端点为,设原点到直线的距离为,到的距离为,若,则椭圆的离心率为 .
10.如图,在平面直角坐标系中,点,直线.设圆的半径为,圆心在上.
(1)若圆心也在直线上,过点作圆的切线,求切线的方程;
(2)若圆上存在点,使,求圆心的横坐标的取值范围.
x
y
A
l
O
11. 在平面直角坐标系中,圆C的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是 .
12. 如图,在平面直角坐标系xOy中,椭圆的左、右焦点分别为,.已知和都在椭圆上,其中e为椭圆的离心率.
(1)求椭圆的离心率;
(2)设A,B是椭圆上位于x轴上方的两点,且直线
与直线平行,与交于点P.
(i)若,求直线的斜率; (ii)求证:是定值.
13、设集合, ,
若 则实数m的取值范围是______________
14、如图,在平面直角坐标系中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k
(1)当直线PA平分线段MN时,求k的值; (2)当k=2时,求点P到直线AB的距离d;
(3)对任意k>0,求证:PA⊥PB
15、 在平面直角坐标系xOy中,已知圆上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是_____
16、在平面直角坐标系中,如图,已知椭圆的左、右顶点为A、B,右焦点为F。设过点T()的直线TA、TB与椭圆分别交于点M、,其中m>0,。
(1)设动点P满足,求点P的轨迹; (2)设,求点T的坐标;
(3)设,求证:直线MN必过x轴上的一定点(其坐标与m无关)。
17.如图,在平面直角坐标系中,为椭圆的四个顶点,为其右焦点,直线与直线相交于点T,线段与椭圆的交点恰为线段的中点,则该椭圆的离心率为 .
18.在平面直角坐标系中,已知圆和圆.
(1)若直线过点,且被圆截得的弦长为,求直线的方程;
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标。
19.在平面直角坐标系中,椭圆1( 0)的焦距为2,以O为圆心,为半径的圆,过点作圆的两切线互相垂直,则离心率= .
20.设平面直角坐标系中,设二次函数的图象与两坐标轴有三个交点,经过这三个交点的圆记为C.求:
(Ⅰ)求实数b 的取值范围; (Ⅱ)求圆C 的方程;
(Ⅲ)问圆C 是否经过某定点(其坐标与b 无关)?请证明你的结论.
解析如下:
1.在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为直径的圆C与直线l交于另一点D.若,则点A的横坐标为 .
【答案】3
【解析】设,则由圆心为中点得,
易得,与联立解得点的横坐标,所以.所以,,
由得,
,或,因为,所以.
2.(本小题满分16分)
如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.
(1)求椭圆C及圆O的方程;
(2)设直线l与圆O相切于第一象限内的点P.
①若直线l与椭圆C有且只有一个公共点,求点P的坐标;
②直线l与椭圆C交于两点.若的面积为,
求直线l的方程.
18.【答案】(1)椭圆的方程为;圆的方程为;
(2)①点的坐标为;②直线的方程为.
【解析】(1)因为椭圆的焦点为,,
可设椭圆的方程为.又点在椭圆上,
所以,解得,因此,椭圆的方程为.
因为圆的直径为,所以其方程为.
(2)①设直线与圆相切于,则,
所以直线的方程为,即.
由,消去,得.(*)
因为直线与椭圆有且只有一个公共点,
所以.
因为,,所以,.
因此,点的坐标为.
②因为三角形的面积为,所以,从而.
设,,由(*)得,
所以.
因为,
所以,即,
解得(舍去),则,因此的坐标为.
综上,直线的方程为.
3. 在平面直角坐标系中,点在圆上,若则点的横坐标的取值范
是 .
【答案】
【考点】直线与圆,线性规划
4.(本小题满分14分) 如图,在平面直角坐标系中,椭圆的左、右焦点分别为, ,离心率为,两准线之间的距离为8.点在椭圆上,且位于第一象限,过点作 直线的垂线,过点作直线的垂线.
(1)求椭圆的标准方程;
(2)若直线的交点在椭圆上,求点的坐标.
F1
O
F2
x
y
(第17题)
【答案】(1)(2)
【解析】解:(1)设椭圆的半焦距为c.
从而直线的方程:, ①
直线的方程:. ②
由①②,解得,所以.
因为点在椭圆上,由对称性,得,即或.
因此点P的坐标为.
5. (本小题满分16分)
如图,在平面直角坐标系中,已知以为圆心的圆及其上一点
(1)设圆与轴相切,与圆外切,且圆心在直线上,求圆的标准方程;
(2)设平行于的直线与圆相交于两点,且,求直线的方程;
(3)设点满足:存在圆上的两点和,使得,求实数的取值范围。
【答案】(1)(2)(3)
(2)因为直线l||OA,所以直线l的斜率为.
设直线l的方程为y=2x+m,即2x-y+m=0,
则圆心M到直线l的距离
因为
而
所以,解得m=5或m=-15.
故直线l的方程为2x-y+5=0或2x-y-15=0.
6.在平面直角坐标系中,为双曲线右支上的一个动点。若点到直线的距离大于c恒成立,则是实数c的最大值为
【答案】
【解析】
试题分析:设,因为直线平行于渐近线,所以c的最大值为直线与渐近线之间距离,为
7.(本小题满分16分) 如图,在平面直角坐标系xOy中,已知椭圆的离心率为,且右焦点F到左准线l的距离为3.
(1)求椭圆的标准方程;
(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.
【答案】(1)(2)或.
(2)当轴时,,又,不合题意.
当与轴不垂直时,设直线的方程为,,,
将的方程代入椭圆方程,得,
则,的坐标为,且
.
若,则线段的垂直平分线为轴,与左准线平行,不合题意.
从而,故直线的方程为,
则点的坐标为,从而.
因为,所以,解得.
此时直线方程为或.
8.(满分14分)如图在平面直角坐标系中,分别是椭圆的左右焦点,顶点的坐标是,连接并延长交椭圆于点,过点作轴的垂线交椭圆于另一点,连接。
(1)若点的坐标为,且,求椭圆的方程;
(2)若,求椭圆离心率的值。
9.在平面直角坐标系中,椭圆的标准方程为,右焦点为
,右准线为,短轴的一个端点为,设原点到直线的距离为,到的距离为,若,则椭圆的离心率为 .
【答案】
【解析】如图,l:x=,=-c=,由等面积得:=。若,则=,整理得:,两边同除以:,得:,解之得:=,所以,离心率为:.
y
x
l
B
F
O
c
b
a
10.x
y
A
l
O
(本小题满分14分)
如图,在平面直角坐标系中,点,直线.
设圆的半径为,圆心在上.
(1)若圆心也在直线上,过点作圆的切线,
求切线的方程;
(2)若圆上存在点,使,求圆心的横坐
标的取值范围.
解:(1)联立:,得圆心为:C(3,2).
设切线为:,
d=,得:.
故所求切线为:.
(2)设点M(x,y),由,知:,
化简得:,
即:点M的轨迹为以(0,1)为圆心,2为半径的圆,可记为圆D.
又因为点在圆上,故圆C圆D的关系为相交或相切.
故:1≤|CD|≤3,其中.
解之得:0≤a≤.
11. 在平面直角坐标系中,圆C的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是 ▲ .
【答案】
【解析】根据题意将此化成标准形式为:,得到,该圆的圆心为半径为 ,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,只需要圆心到直线的距离,即可,所以有,化简得解得,所以k的最大值是 .
12. (本小题满分16分)
如图,在平面直角坐标系xOy中,椭圆的左、右焦点分别为,.已知和都在椭圆上,其中e为椭圆的离心率.
A
B
P
O
x
y
(第19题)
(1)求椭圆的离心率;
(2)设A,B是椭圆上位于x轴上方的两点,且直线
与直线平行,与交于点P.
(i)若,求直线的斜率;
(ii)求证:是定值.
【命题意图】本题主要考查椭圆的定义、标准方程及几何性质、直线方程、两点间的距离公式等基础知识,考查运算求解能力和推理论证能力.
【解析】(1)设题设知,,由点(1,)在椭圆上,
得=1,解得=1,于是,
又点(,)在椭圆上,∴=1,即,解得=2,
∴所求椭圆方程的方程是=1;
(2)由(1)知(-1,0),(1,0), ∵∥,
∴可设直线的方程为:,直线的方程为:,
设,,
由,得,解得,
故===, ①
同理,=, ②
(ⅰ)由①②得-=,解得=得=2,
∵,∴,∴直线的斜率为.
(ⅱ)∵∥, ∴, ∴, ∴,
由B点在椭圆知,∴,同理,
∴==
由①②知,+=,×=,
∴==,∴是定值.
13、设集合, ,
若 则实数m的取值范围是______________
答案:
解析:综合考察集合及其运算、直线与圆的位置关系、含参分类讨论、点到直线距离公式、两条直线位置关系、解不等式,难题。当时,集合A是以(2,0)为圆心,以为半径的圆,集合B是在两条平行线之间, ,因为此时无解;当时,集合A是以(2,0)为圆心,以和为半径的圆环,集合B是在两条平行线之间,必有 .又因为
N
M
P
A
x
y
B
C
14、(本小题满分16分)如图,在平面直角坐标系中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k
(1)当直线PA平分线段MN时,求k的值;
(2)当k=2时,求点P到直线AB的距离d;
(3)对任意k>0,求证:PA⊥PB
解析:(1)(2)两题主要考察直线的斜率及其方程、点到直线距离公式、
解方程组,是容易题;(3)是考察学生灵活运用共线问题、点在曲线上、
直线斜率、两条直线位置关系的判断、运算能力,是难题。
(1)M(-2,0),N(0,),M、N的中点坐标为(-1,),所以
(2)由得,,AC方程:即:
所以点P到直线AB的距离
(3)法一:由题意设,
A、C、B三点共线,又因为点P、B在椭圆上,
,两式相减得:
法二:设,
A、C、B三点共线,又因为点A、B在椭圆上,
,两式相减得:,
,
15、在平面直角坐标系xOy中,已知圆上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是______▲_____[来源
[解析]考查圆与直线的位置关系。 圆半径为2,
圆心(0,0)到直线12x-5y+c=0的距离小于1,,的取值范围是(-13,13)。
16、(本小题满分16分)在平面直角坐标系中,如图,已知椭圆的左、右顶点为A、B,右焦点为F。设过点T()的直线TA、TB与椭圆分别交于点M、,其中m>0,。
(1)设动点P满足,求点P的轨迹;
(2)设,求点T的坐标;
(3)设,求证:直线MN必过x轴上的一定点(其坐标与m无关)。
[解析] 本小题主要考查求简单曲线的方程,考查方直线与椭圆的方程等基础知识。考查运算求解能力和探究问题的能力。满分16分。
(1)设点P(x,y),则:F(2,0)、B(3,0)、A(-3,0)。
由,得 化简得。
故所求点P的轨迹为直线。
(2)将分别代入椭圆方程,以及得:M(2,)、N(,)
直线MTA方程为:,即,
直线NTB 方程为:,即。
联立方程组,解得:,
所以点T的坐标为。
(3)点T的坐标为
直线MTA方程为:,即,
直线NTB 方程为:,即。
分别与椭圆联立方程组,同时考虑到,
解得:、。
(方法一)当时,直线MN方程为:
令,解得:。此时必过点D(1,0);
当时,直线MN方程为:,与x轴交点为D(1,0)。
所以直线MN必过x轴上的一定点D(1,0)。
(方法二)若,则由及,得,
此时直线MN的方程为,过点D(1,0)。
若,则,直线MD的斜率,
直线ND的斜率,得,所以直线MN过D点。
因此,直线MN必过轴上的点(1,0)。
17. 如图,在平面直角坐标系中,为椭圆的四个顶点,为其右焦点,直线与直线相交于点T,线段与椭圆的交点恰为线段的中点,则该椭圆的离心率为 ▲ .
【解析】 考查椭圆的基本性质,如顶点、焦点坐标,离心率的计算等。以及直线的方程。
直线的方程为:;
直线的方程为:。二者联立解得:,w.w.w.k.s.5.u.c.o.m
则在椭圆上,
,w.w.w.k.s.5.u.c.o.m
解得:
18.(本小题满分16分)
在平面直角坐标系中,已知圆和圆.
(1)若直线过点,且被圆截得的弦长为,求直线的方程;
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标。
【解析】 本小题主要考查直线与圆的方程、点到直线的距离公式,考查数学运算求解能力、综合分析问题的能力。满分16分。
(1)设直线的方程为:,即
由垂径定理,得:圆心到直线的距离,
结合点到直线距离公式,得: w.w.w.k.s.5.u.c.o.m
化简得:
求直线的方程为:或,即或
(2) 设点P坐标为,直线、的方程分别为:
,即:
因为直线被圆截得的弦长与直线被圆截得的弦长相等,两圆半径相等。由垂径定理,得::圆心到直线与直线的距离相等。w.w.w.k.s.5.u.c.o.m
故有:,
化简得:
关于的方程有无穷多解,有: w.w.w.k.s.5.u.c.o.m
解之得:点P坐标为或。
19.在平面直角坐标系中,椭圆1( 0)的焦距为2,以O为圆心,为半径的圆,过点作圆的两切线互相垂直,则离心率= ▲ .
【答案】
【解析】设切线PA、PB 互相垂直,又半径OA 垂直于PA,所以△OAP 是等腰直角三角形,故,解得.
20.设平面直角坐标系中,设二次函数的图象与两坐标轴有三个交点,经过这三个交点的圆记为C.求:
(Ⅰ)求实数b 的取值范围;
(Ⅱ)求圆C 的方程;
(Ⅲ)问圆C 是否经过某定点(其坐标与b 无关)?请证明你的结论.
【解析】本小题主要考查二次函数图象与性质、圆的方程的求法.
解:(Ⅰ)令=0,得抛物线与轴交点是(0,b);
令,由题意b≠0 且Δ>0,解得b<1 且b≠0.
(Ⅱ)设所求圆的一般方程为
令=0 得这与=0 是同一个方程,故D=2,F=.
令=0 得=0,此方程有一个根为b,代入得出E=―b―1.
所以圆C 的方程为.
(Ⅲ)圆C 必过定点(0,1)和(-2,1).
证明如下:将(0,1)代入圆C 的方程,得左边=0+1+2×0-(b+1)+b=0,右边=0,
所以圆C 必过定点(0,1).
同理可证圆C 必过定点(-2,1).