- 170.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2014年全国各地高考文科数学试题分类汇编:数列
一、选择填空题
1.[2014·重庆卷2] 在等差数列{an}中,a1=2,a3+a5=10,则a7=( )
A.5 B.8 C.10 D.14
【答案】B
2.[2014·辽宁卷9] 设等差数列{an}的公差为d,若数列{2a1an}为递减数列,则( )
A.d>0 B.d<0C.a1d>0 D.a1d<0
【答案】D
3.[2014·全国卷8] 设等比数列{an}的前n项和为Sn.若S2=3,S4=15,则S6=( )
A.31 B.32C.63 D.64
【答案】C
4.[2014·天津卷5] 设{an}是首项为a1,公差为-1的等差数列,Sn为其前n项和.若S1,S2,S4成等比数列,则a1=( )
A.2 B.-2 C. D.- 【答案】D
5.[2014·新课标全国卷Ⅱ5] 等差数列{an}的公差为2,若a2,a4,a8成等比数列,则{an}的前n项和Sn=( )
A.n(n+1) B.n(n-1)C. D.
【答案】A
6.[2014·新课标全国卷Ⅱ16] 数列{an}满足an+1=,a8=2,则a1=________.【答案】
7.[2014·江西卷13] 在等差数列{an}中,a1=7,公差为d,前n项和为Sn,当且仅当n=8时Sn取得最大值,则d的取值范围为________.【答案】
8.[2014·安徽卷12] 如图13,在等腰直角三角形ABC中,斜边BC=2,过点A作BC的垂线,垂足为A1;过点A1作AC的垂线,垂足为A2;过点A2作A1C的垂线,垂足为A3;….依此类推,设BA=a1,AA1=a2,A1A2=a3,…,A5A6=a7,则a7=________.【答案】
.
9.[2014·广东卷13] 等比数列{an}的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=________.
【答案】5
10.[2014·江苏卷7] 在各项均为正数的等比数列{an}中,若a2=1,a8=a6+2a4,则a6的值是________.【答案】4
[解析] 设等比数列{an}的首项为a,公比为q,易知q≠1,根据题意可得解得q2=4,=-1,所以S6==(-1)(1-43)=63.
[解析] 由题意,得a2,a2+4,a2+12成等比数列,即(a2+4)2=a2(a2+12),解得a2=4,即a1=2,所以Sn=2n+×2=n(n+1).
二、解答题
1.[2014北京卷15]已知是等差数列,满足,,数列满足,,且是等比数列.
(1)求数列和的通项公式;(2)求数列的前项和.
解:(1)设等差数列{an}的公差为d,由题意得d===3.
所以an=a1+(n-1)d=3n(n=1,2,…).
设等比数列{bn-an}的公比为q,由题意得q3===8,解得q=2.
所以bn-an=(b1-a1)qn-1=2n-1.
从而bn=3n+2n-1(n=1,2,…).
(2)由(1)知bn=3n+2n-1(n=1,2,…).
数列{3n}的前n项和为n(n+1),数列{2n-1}的前n项和为1×=2n-1,
所以,数列{bn}的前n项和为n(n+1)+2n-1.
2.[2014·福建卷17] 在等比数列{an}中,a2=3,a5=81.
(1)求an;(2)设bn=log3an,求数列{bn}的前n项和Sn.
解:(1)设{an}的公比为q,依题意得解得因此,an=3n-1.
(2)因为bn=log3an=n-1,
所以数列{bn}的前n项和Sn==.
3.[2014·全国新课标卷Ⅰ17] 已知{an}是递增的等差数列,a2,a4是方程x2-5x+6=0的根.
(1)求{an}的通项公式;(2)求数列的前n项和.
解:(1)方程x2-5x+6=0的两根为2,3.
由题意得a2=2,a4=3.设数列{an}的公差为d,则a4-a2=2d,故d=,从而得a1=.
所以{an}的通项公式为an=n+1.
(2)设的前n项和为Sn,由(1)知=,
则Sn=++…++,
Sn=++…++,
两式相减得
Sn=+-=+-,所以Sn=2-.
4.[2014·陕西卷16] △ABC的内角A,B,C所对的边分别为a,b,c.
(1)若a,b,c成等差数列,证明:sin A+sin C=2sin(A+C);
(2)若a,b,c成等比数列,且c=2a,求cos B的值.
解: (1)∵a,b,c成等差数列,∴a+c=2b.由正弦定理得sin A+sin C=2sin B.
∵sin B=sin[π-(A+C)]=sin(A+C),
∴sin A+sin C=2sin(A+C).
(2)由题设有b2=ac,c=2a,∴b=a.
由余弦定理得cos B===.
于是,Sn=1×4+2×42+3×43+…+(n-1)×4n-1+n×4n,
4Sn=1×42+2×43+…+(n-1)×4n+n×4n+1,
因此,Sn-4Sn=4+42+…+4n-n·4n+1=-n·4n+1=,
所以,Sn=.
5.[2014·浙江卷19] 已知等差数列{an}的公差d>0.设{an}的前n项和为Sn,a1=1,S2·S3=36.
(1)求d及Sn;(2)求m,k(m,k∈N*)的值,使得am+am+1+am+2+…+am+k=65.
解:(1)由题意知(2a1+d)(3a1+3d)=36,
将a1=1代入上式解得d=2或d=-5.
因为d>0,所以d=2.
从而an=2n-1,Sn=n2(n∈N*).
(2)由(1)得am+am+1+am+2+…+am+k=(2m+k-1)(k+1),
所以(2m+k-1)(k+1)=65.
由m,k∈N*知2m+k-1≥k+1>1,
故所以
6.[2014·重庆卷16] 已知{an}是首项为1,公差为2的等差数列,Sn表示{an}的前n项和.
(1)求an及Sn;
(2)设{bn}是首项为2的等比数列,公比q满足q2-(a4+1)q+S4=0,求{bn}的通项公式及其前n项和Tn.
解:(1)因为{an}是首项a1=1,公差d=2的等差数列,所以
an=a1+(n-1)d=2n-1.
故Sn=1+3+…+(2n-1)===n2.
(2)由(1)得a4=7,S4=16.因为q2-(a4+1)q+S4=0,即q2-8q+16=0,
所以(q-4)2=0,从而q=4.
又因为b1=2,{bn}是公比q=4的等比数列,
所以bn=b1qn-1=2×4n-1=22n-1.
从而{bn}的前n项和Tn==(4n-1).
7.[2014·山东卷19] 在等差数列{an}中,已知公差d=2,a2是a1与a4的等比中项.
(1)求数列{an}的通项公式;(2)设bn=a,记Tm=-b1+b2-b3+b4-…+(-1)nbn,求Tn.
解:(1)由题意知,(a1+d)2=a1(a1+3d),即(a1+2)2=a1(a1+6),解得a1=2.
故数列{an}的通项公式为an=2n.
(2)由题意知,bn=a=n(n+1),所以Tn=-1×2+2×3-3×4+…+(-1)nn×(n+1).
因为bn+1-bn=2(n+1),
所以当n为偶数时,
Tn=(-b1+b2)+(-b3+b4)+…+(-bn-1+bn)
=4+8+12+…+2n==,
当n为奇数时,
Tn=Tn-1+(-bn)=-n(n+1)=-.
所以Tn=
8.[2014·湖南卷16] 已知数列{an}的前n项和Sn=,n∈N*.
(1)求数列{an}的通项公式;(2)设bn=2an+(-1)nan,求数列{bn}的前2n项和.
解:(1)当n=1时,a1=S1=1;
当n≥2时,an=Sn-Sn-1=-=n.
故数列{an}的通项公式为an=n.
(2)由(1)知,bn=2n+(-1)nn.记数列{bn}的前2n项和为T2n,则T2n=(21+22+…+22n)+(-1+2-3+4-…+2n).
记A=21+22+…+22n,B=-1+2-3+4-…+2n,
则A==22n+1-2,
B=(-1+2)+(-3+4)+…+[-(2n-1)+2n]=n.
故数列{bn}的前2n项和T2n=A+B=22n+1+n-2.
9.[2014·全国卷] 数列{an}满足a1=1,a2=2,an+2=2an+1-an+2.
(1)设bn=an+1-an,证明{bn}是等差数列;(2)求{an}的通项公式.
解:(1)由an+2=2an+1-an+2,得an+2-an+1=an+1-an+2,
即bn+1=bn+2.又b1=a2-a1=1,
所以{bn}是首项为1,公差为2的等差数列.
(2)由(1)得bn=1+2(n-1),即an+1-an=2n-1.
于是所以an+1-a1=n2,即an+1=n2+a1.
10.[2014·湖北卷19] 已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列.
(1)求数列{an}的通项公式.
(2)记Sn为数列{an}的前n项和,是否存在正整数n,使得Sn>60n+800?若存在,求n的最小值;若不存在,说明理由.
解:(1)设数列{an}的公差为d,
依题意知,2,2+d,2+4d成等比数列,故有(2+d)2=2(2+4d),
化简得d2-4d=0,解得d=0或d=4,
当d=0时,an=2;
当d=4时,an=2+(n-1)·4=4n-2,
从而得数列{an}的通项公式为an=2或an=4n-2.
(2)当an=2时,Sn=2n,显然2n<60n+800,
此时不存在正整数n,使得Sn>60n+800成立.
当an=4n-2时,Sn==2n2.
令2n2>60n+800,即n2-30n-400>0,
解得n>40或n<-10(舍去),
此时存在正整数n,使得Sn>60n+800成立,n的最小值为41.
综上,当an=2时,不存在满足题意的正整数n;
当an=4n-2时,存在满足题意的正整数n,其最小值为41.
又a1=1,所以{an}的通项公式an=n2-2n+2.
11.[2014·天津卷20] 已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+xnqn-1,xi∈M,i=1,2,…,n}.
(1)当q=2,n=3时,用列举法表示集合A.
(2)设s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnqn-1,其中ai,bi∈M,i=1,2,…,n.证明:若an<bn,则s<t.
解:(1)当q=2,n=3时,M={0,1},A={x|x=x1+x2·2+x3·22,xi∈M,i=1,2,3},
可得A={0,1,2,3,4,5,6,7}.
(2)证明:由s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnqn-1,ai,bi∈M,i=1,2,…,n及an1,都存在m∈N*,使得a1,an,am成等比数列.
解:(1)由Sn=,得a1=S1=1.当n≥2时,an=Sn-Sn-1=3n-2,a1也符合上式,所以数列{an}的通项公式为an=3n-2.
(2)证明:要使得a1,an,am成等比数列,只需要a=a1·am,即(3n-2)2=1·(3m-2),即m=3n2-4n+2.而此时m∈N*,且
m>n,
所以对任意的n>1,都存在m∈N*,使得a1,an,am成等比数列.
20.[2014·江苏卷20] 设数列{an}的前n项和为Sn.若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“H数列”.
(1)若数列{an}的前n项和Sn=2n(n∈),证明:{an}是“H数列”.
(2)设{an}是等差数列,其首项a1=1,公差d<0.若{an}是“H数列”,求d的值.
(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn(n∈)成立.
解: (1)证明:由已知,当n≥1时,an+1=Sn+1-Sn=2n+1-2n=2n.于是对任意的正整数n,总存在正整数m=n+1,
使得Sn=2n=am,所以{an}是“H数列”.
(2)由已知得,S2=2a1+d=2+d.因为{an}是“H数列”,所以存在正整数m,使得S2=am,即2+d=1+(m-1)d,于是(m-2)d=1.因为d<0,所以m-2<0,故m=1,从而d=-1.
当d=-1时,an=2-n,Sn=是小于2的整数,n∈N*.于是对任意的正整数n,总存在正整数
m=2-Sn=2-,使得Sn=2-m=am,所以{an}是“H数列”,因此d的值为-1.
(3)证明:设等差数列{an}的公差为d,则an =a1+(n-1)d=na1+(n-1)(d-a1)(n∈N*).
令bn=na1,cn=(n-1)(d-a1),则an=bn+cn(n∈N*).
下证{bn}是“H数列”.
设{bn}的前n项和为Tn,则Tn=a1(n∈N*).于是对任意的正整数n,总存在正整数m=,使得Tn=bm,所以{bn}是“H数列”.
同理可证{cn}也是“H数列”.
所以对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.