- 783.00 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2006年普通高等学校招生全国统一考试试卷
文科数学试题及答案(安徽卷)
参考公式:
如果时间A、B互斥,那么
如果时间A、B相互独立,那么
如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率
球的表面积公式,其中R表示球的半径
球的体积公式,其中R表示球的半径
第Ⅰ卷(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设全集,集合,,则等于( )
A. B. C. D.
解:,则=,故选B
(2)不等式的解集是( )
A. B. C. D.
解:由得:,即,故选D。
(3)函数的反函数是( )
A. B.
C. D.
解:由得:,所以为所求,故选D。
(4)“”是“的( )
A.必要不充分条件 B.充分不必要条件
C.充分必要条件 D.既不充分也不必要条件
解:条件集是结论集的子集,所以选B。
(5)若抛物线的焦点与椭圆的右焦点重合,则的值为( )
A. B. C. D.
解:椭圆的右焦点为(2,0),所以抛物线的焦点为(2,0),则,故选D。
(6)表面积为 的正八面体的各个顶点都在同一个球面上,则此球的体积为
A. B. C. D.
解:此正八面体是每个面的边长均为的正三角形,所以由知,
,则此球的直径为,故选A。
(7)直线与圆没有公共点,则的取值范围是
A. B. C. D.
解:由圆的圆心到直线大于,且,选A。
(8)对于函数,下列结论正确的是( )
A.有最大值而无最小值 B.有最小值而无最大值
C.有最大值且有最小值 D.既无最大值又无最小值
解:令,则函数的值域为函数的值域,而是一个减函减,故选B。
(9)将函数的图象按向量平移,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( )
A. B.
C. D.
解:将函数的图象按向量平移,平移后的图象所对应的解析式为,由图象知,,所以,因此选C。
(10)如果实数满足条件 ,那么的最大值为( )
A. B. C. D.
解:当直线过点(0,-1)时,最大,故选B。
(11)如果的三个内角的余弦值分别等于的三个内角的正弦值,则( )
A.和都是锐角三角形 B.和都是钝角三角形
C.是钝角三角形,是锐角三角形
D.是锐角三角形,是钝角三角形
解:的三个内角的余弦值均大于0,则是锐角三角形,若
是锐角三角形,由,得,那么,,所以是钝角三角形。故选D。
(12)在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为( )
A. B. C. D.
解:在正方体上任选3个顶点连成三角形可得个三角形,要得直角非等腰三角形,则每个顶点上可得三个(即正方体的一边与过此点的一条面对角线),共有24个,得,所以选C。
2006年普通高等学校招生全国统一考试
文科数学(安徽卷)
第Ⅱ卷(非选择题 共90分)
注意事项:
请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效。
二、填空题:本大题共4小题,每小题4分,共16分,把答案填写在答题卡的相应位置。
(13)设常数,展开式中的系数为,则=_____。
解:,由。
(14)在中,,M为BC的中点,则_______。(用表示)
解:,,所以。
(15)函数对于任意实数满足条件,若则__________。
解:由得,所以,则。
(16)平行四边形的一个顶点A在平面内,其余顶点在的同侧,已知其中有两个顶点到的距离分别为1和2 ,那么剩下的一个顶点到平面的距离可能是:
①1; ②2; ③3; ④4;
以上结论正确的为______________。(写出所有正确结论的编号)
A
B
C
D
第16题图
A1
解:如图,B、D到平面的距离为1、2,则D、B的中点到平面的距离为,所以C到平面的距离为3;
B、C到平面的距离为1、2,D到平面的距离为,则,即,所以D到平面的距离为1;
C、D到平面的距离为1、2,同理可得B到平面的距离为1;所以选①③。
三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤
(17)(本大题满分12分)已知
(Ⅰ)求的值;
(Ⅱ)求的值。
解:(Ⅰ)由,得,所以=。
(Ⅱ)∵,∴。
(18)(本大题满分12分)在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较。在试制某种牙膏新品种时,需要选用两种不同的添加剂。现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用。根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验。
(Ⅰ)求所选用的两种不同的添加剂的芳香度之和等于4的概率;
(Ⅱ)求所选用的两种不同的添加剂的芳香度之和不小于3的概率;
解:设“所选用的两种不同的添加剂的芳香度之和等于4”的事件为A,“所选用的两种不同的添加剂的芳香度之和不小于3”的事件为B
A
B
C
D
E
F
O
P
第19题图
H
(Ⅰ)芳香度之和等于4的取法有2种:、,故。
(Ⅱ)芳香度之和等于1的取法有1种:;芳香度之和等于2的取法有1种:,故。
(19)(本大题满分12分)如图,P是边长为1的正六边形ABCDEF所在平面外一点,,P在平面ABC内的射影为BF的中点O。
(Ⅰ)证明⊥;
(Ⅱ)求面与面所成二面角的大小。
解:(Ⅰ)在正六边形ABCDEF中,为等腰三角形,
∵P在平面ABC内的射影为O,∴PO⊥平面ABF,∴AO为PA在平面ABF内的射影;∵
O为BF中点,∴AO⊥BF,∴PA⊥BF。
(Ⅱ)∵PO⊥平面ABF,∴平面PBF⊥平面ABC;而O为BF中点,ABCDEF是正六边形 ,∴A、O、D共线,且直线AD⊥BF,则AD⊥平面PBF;又∵正六边形ABCDEF的边长为1,∴,,。
过O在平面POB内作OH⊥PB于H,连AH、DH,则AH⊥PB,DH⊥PB,所以为所求二面角平面角。
在中,OH=,=。
在中,;
而
(Ⅱ)以O为坐标原点,建立空间直角坐标系,P(0,0,1),A(0,,0),B(,0,0),D(0,2,0),∴,,
设平面PAB的法向量为,则,,得,;
设平面PDB的法向量为,则,,得,;
(20)(本大题满分12分)设函数,已知是奇函数。
(Ⅰ)求、的值。
(Ⅱ)求的单调区间与极值。
证明(Ⅰ)∵,∴。从而
=是一个奇函数,所以得,由奇函数定义得;
(Ⅱ)由(Ⅰ)知,从而,由此可知,
和是函数是单调递增区间;
是函数是单调递减区间;
在时,取得极大值,极大值为,在时,取得极小值,极小值为。
(21)(本大题满分12分)在等差数列中,,前项和满足条件,
(Ⅰ)求数列的通项公式;
(Ⅱ)记,求数列的前项和。
解:(Ⅰ)设等差数列的公差为,由得:,所以,即,又=,所以。
(Ⅱ)由,得。所以,
当时,;
当时,
,
即。
(22)(本大题满分14分)如图,F为双曲线C:的右焦点。P为双曲线C右支上一点,且位于轴上方,M为左准线上一点,为坐标原点。已知四边形为平行四边形,。
O
F
x
y
P
M
第22题图
H
N
(Ⅰ)写出双曲线C的离心率与的关系式;
(Ⅱ)当时,经过焦点F且平行于OP的直线交双曲线于A、B点,若,求此时的双曲线方程。
解:∵四边形是,∴
,作双曲线的右准线交PM于H,则,又,。
(Ⅱ)当时,,,,双曲线为,设P,则,,所以直线OP的斜率为,则直线AB的方程为,代入到双曲线方程得:,
又,由得:,解得,则,所以为所求。