- 4.37 MB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2010—2014高考文科立体几何大题汇总
1.(2014年课标全国Ⅰ文.19)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.
(1)证明:B1C⊥AB;
(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC-A1B1C1的高.
2.(2014课标全国Ⅱ文.18) (本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1)证明:PB∥平面AEC;
(2)设AP=1,,三棱锥P-ABD的体积,求A到平面PBC的距离.
3.(2014北京文.17) (本小题满分14分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.
(1)求证:平面ABE⊥平面B1BCC1;
(2)求证:C1F∥平面ABE;
(3)求三棱锥E-ABC的体积.
4.(2014福建文.19) (本小题满分12分)如图,三棱锥A-BCD中,AB⊥平面BCD,CD⊥BD.
(1)求证:CD⊥平面ABD;
(2)若AB=BD=CD=1,M为AD中点,求三棱锥A-MBC的体积.
5.(2014重庆文.20) (本小题满分12分)如图,四棱锥P-ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,,M为BC上一点,且.
(1)证明:BC⊥平面POM;
(2)若MP⊥AP,求四棱锥P-ABMO的体积.
6.(2014广东文.18) (本小题满分13分)如图1,四边形ABCD为矩形,PD⊥平面ABCD,AB=1,BC=PC=2.作如图2折叠;折痕EF∥DC,其中点E,F分别在线段PD,PC上,沿EF折叠后点P叠在线段AD上的点记为M,并且MF⊥CF.
图2
图1
(1)证明:CF⊥平面MDF;
(2)求三棱锥M-CDE的体积.
7.(2014辽宁文.19) (本小题满分12分)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.
(1)求证:EF⊥平面BCG;
(2)求三棱锥D-BCG的体积.
8.【2012高考新课标文19】(本小题满分12分)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点
(I)证明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.
C
B
A
D
C1
A1
9.【2012高考湖南文19】(本小题满分12分) 如图6,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(Ⅰ)证明:BD⊥PC;
(Ⅱ)若AD=4,BC=2,直线PD与平面PAC所成的角为30°,求四棱锥P-ABCD的体积.
10.【2012高考广东文18】如图5所示,在四棱锥中,平面,,,是的中点,是上的点且,为△中边上的高.
(1)证明:平面;
(2)若,,,求三棱锥的体积;
(3)证明:平面.
11.【2012高考陕西文18】(本小题满分12分)直三棱柱ABC- A1B1C1中,AB=A A1 ,=
(Ⅰ)证明;
(Ⅱ)已知AB=2,BC=,求三棱锥 的体积
12.【2012高考辽宁文18】(本小题满分12分)
如图,直三棱柱,,AA′=1,点M,N分别为和的中点。
(Ⅰ)证明:∥平面;
(Ⅱ)求三棱锥的体积。
(椎体体积公式V=Sh,其中S为地面面积,h为高)
3.(2013年高考陕西卷(文))如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD, .
(Ⅰ) 证明: A1BD // 平面CD1B1;
(Ⅱ) 求三棱柱ABD-A1B1D1的体积.
14.(2013年高考广东卷(文))如图4,在边长为1的等边三角形中,分别是边上的点,,是的中点,与交于点,将沿折起,得到如图5所示的三棱锥,其中.
(1) 证明://平面;
(2) 证明:平面;
(3) 当时,求三棱锥的体积.
15.(2013年高考课标Ⅰ卷(文))如图,三棱柱中,,,.
(Ⅰ)证明:;
(Ⅱ)若,,求三棱柱的体积.
16.(2013年高考安徽(文))如图,四棱锥的底面是边长为2的菱形,.已知 .
(Ⅰ)证明:
(Ⅱ)若为的中点,求三菱锥的体积.
17.(2013东莞一模)如图,平行四边形中,,,且,正方形和平面垂直,是的中点.
(1)求证:平面;[来源:学&科&网Z&X&X&K]
(2)求证:∥平面;
(3)求三棱锥的体积.
18.(2012辽宁高考) 如图,直三棱柱 中,,,,点分别为和的中点.
(1)证明:∥平面;
(2)求三棱锥的体积.
19.(2011年陕西文)如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90°。
(1)证明:平面ADB⊥平面BDC;
(2 )设BD=1,求三棱锥D—ABC的表面积。
20.(2011年全国新课标文)如图,四棱锥中,底面ABCD为平行四边形,,,底面ABCD.
(I)证明:;
(II)设PD=AD=1,求棱锥D-PBC的高.
21.(2010陕西文数)如图,在四棱锥P—ABCD中,底面ABCD是矩形PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点.
(Ⅰ)证明:EF∥平面PAD;
(Ⅱ)求三棱锥E—ABC的体积V.
22.(2010安徽文数)如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点,
(Ⅰ)求证:FH∥平面EDB;
(Ⅱ)求证:AC⊥平面EDB;
(Ⅲ)求四面体B—DEF的体积;
23.(2010山东文数)在如图所示的几何体中,四边形是正方形,平面,,、、分别为、、的中点,且.
(I)求证:平面平面;
(II)求三棱锥与四棱锥的体积之比.
24.(2010山东理数)如图,在五棱锥P—ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC, ABC=45°,AB=2,BC=2AE=4,三角形PAB是等腰三角形.
(Ⅰ)求证:平面PCD⊥平面PAC;
(Ⅱ)求直线PB与平面PCD所成角的大小;
(Ⅲ)求四棱锥P—ACDE的体积.