• 681.50 KB
  • 2021-05-13 发布

全国高考文科数学试题及答案详解辽宁卷

  • 10页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2011年普通高等学校招生考试(辽宁卷)‎ 数 学(供文科考生使用)‎ 注意事项:‎ ‎1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.‎ ‎2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.‎ ‎3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.‎ ‎4.考试结束后,将本试卷和答题卡一并交回.‎ 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.‎ ‎1.已知集合A={x},B={x}},则AB=‎ ‎ A.{x} B.{x} ‎ ‎ C.{x} D.{x}‎ ‎2.为虚数单位,‎ ‎ A.0 B.‎2‎ C. D.4‎ ‎3.已知向量,,,则 ‎ A. B. C.6 D.12‎ ‎4.已知命题P:n∈N,2n>1000,则P为 ‎ A.n∈N,2n≤1000 B.n∈N,2n>1000‎ ‎ C.n∈N,2n≤1000 D.n∈N,2n<1000‎ ‎5.若等比数列{an}满足anan+1=16n,则公比为 ‎ A.2 B.‎4 ‎ C.8 D.16‎ ‎6.若函数为奇函数,则a=‎ ‎ A. B. C. D.1‎ ‎7.已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,,则线段AB的中点到y轴的距离为 ‎ A. B.‎1 ‎ C. D.‎ ‎8.一个正三棱柱的侧棱长和底面边长相等,体积为,它的三视图中的俯视图 如右图所示,左视图是一个矩形,则这个矩形的面积是 ‎ A.4 B. C.2 D.‎ ‎9.执行右面的程序框图,如果输入的n是4,则输出的P是 ‎ A.8‎ ‎ B.5‎ ‎ C.3‎ ‎ D.2‎ ‎10.已知球的直径SC=4,A,B是该球球面上的两点,AB=2,‎ ‎∠ASC=∠BSC=45°,则棱锥S-ABC的体积为 ‎ A. B.‎ ‎ C. D.‎ ‎11.函数的定义域为,,对任意,,‎ 则的解集为 ‎ A.(,1) B.(,+) ‎ ‎ C.(,) D.(,+)‎ ‎12.已知函数=Atan(x+)(),y=的 部分图像如下图,则 ‎ A.2+ B.‎ ‎ C. D.‎ 第Ⅱ卷 本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.‎ 二、填空题:本大题共4小题,每小题5分.‎ ‎13.已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则C的方程为___________.‎ ‎14.调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加____________万元.‎ ‎15.Sn为等差数列{an}的前n项和,S2=S6,a4=1,则a5=____________.‎ ‎16.已知函数有零点,则的取值范围是___________.‎ 三、解答题:解答应写文字说明,证明过程或演算步骤.‎ ‎17.(本小题满分12分)‎ ‎△ABC的三个内角A,B,C所对的边分别为a,b,c,asinAsinB+bcos‎2A=a.‎ ‎(I)求;‎ ‎(II)若c2=b2+a2,求B.‎ ‎18.(本小题满分12分)‎ 如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.‎ ‎(I)证明:PQ⊥平面DCQ;‎ ‎(II)求棱锥Q—ABCD的的体积与棱锥P—DCQ的体积的比值.‎ ‎19.(本小题满分12分)‎ 某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.‎ ‎(I)假设n=2,求第一大块地都种植品种甲的概率;‎ ‎(II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表:‎ 品种甲 ‎403‎ ‎397‎ ‎390‎ ‎404‎ ‎388‎ ‎400‎ ‎412‎ ‎406‎ 品种乙 ‎419‎ ‎403‎ ‎412‎ ‎418‎ ‎408‎ ‎423‎ ‎400‎ ‎413‎ 分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?‎ 附:样本数据的的样本方差,其中为样本平均数.‎ ‎20.(本小题满分12分)‎ 设函数=x+ax2+blnx,曲线y=过P(1,0),且在P点处的切斜线率为2.‎ ‎(I)求a,b的值;‎ ‎(II)证明:≤2x-2.‎ ‎21.(本小题满分12分)‎ 如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上,椭圆C2的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A,B,C,D.‎ ‎(I)设,求与的比值;‎ ‎(II)当e变化时,是否存在直线l,使得BO∥AN,并说明理由.‎ 请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分.做答是用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑.‎ ‎22.(本小题满分10分)选修4-1:几何证明选讲 如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.‎ ‎(I)证明:CD//AB;‎ ‎(II)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.‎ ‎23.(本小题满分10分)选修4-4:坐标系统与参数方程 在平面直角坐标系xOy中,曲线C1的参数方程为(为参数),曲线C2的参数方程为(,为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=与C1,C2各有一个交点.当=0时,这两个交点间的距离为2,当=时,这两个交点重合.‎ ‎(I)分别说明C1,C2是什么曲线,并求出a与b的值;‎ ‎(II)设当=时,l与C1,C2的交点分别为A1,B1,当=时,l与C1,C2的交点为 A2,B2,求四边形A‎1A2B2B1的面积.‎ ‎24.(本小题满分10分)选修4-5:不等式选讲 已知函数=|x-2|x-5|.‎ ‎(I)证明:≤≤3;‎ ‎(II)求不等式≥x2x+15的解集.‎ 参考答案 评分说明:‎ ‎1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.‎ ‎2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.‎ ‎3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.‎ ‎4.只给整数分数,选择题不给中间分.‎ 一、选择题 ‎1. 【解析】选D.利用数轴可以得到AB={x}{x}={x}‎ ‎2. 【解析】选A,‎ ‎3. 【解析】选D.因为,所以.‎ ‎ 又,所以,得.‎ ‎4. 【解析】选A.特称命题的否定是全称命题,“>”的否定是“≤”,故正确答案是A.‎ ‎5. 【解析】选B.设等比数列{an}的公比为,∵anan+1=16n,∴an+1an+2=16n+1,‎ ‎∴‎ ‎6. 【解析】选A.∵ 函数为奇函数,‎ ‎∴,解得.‎ ‎7. 【解析】选C.设 A,B两点的横坐标分别为m,n,则由及抛物线的定义可知,∴即线段AB的中点到y轴的距离为 ‎8. 【解析】选B.设棱长为,由体积为可列等式,,‎ 所求矩形的底边长为,这个矩形的面积是 ‎9. 【解析】选C,若输入n=4,则执行s=0,t=1,k=1,p=1,判断1<4成立,进行第一次循环;p=2,s=1,t=2,k=2,判断2<4成立,进行第二次循环;p=3,s=2,t=2,k=3,判断3<4成立,进行第三次循环;p=4,s=2,t=4,k=4,判断4<4不成立,故输出p=4‎ ‎10. 【解析】选C,设球心为,则是两个全等的等腰直角三角形斜边上的高,斜边故,且有,.‎ ‎∴=.‎ ‎11. 【解析】选B。设g(x)= f(x)-(2x+4), g’(x)= .因为对任意,,所以对任意,g’(x)>0,则函数g(x)在R上单调递增.又因为g(-1)= f(-1)-(-2+4)=0,故g(x)>0,即f(x)>2x+4的解集为(-1,+).‎ ‎12. 【解析】选B.如图可知,即,所以,再结合图像可得,即,所以,只有,所以,又图像过点(0,1),代入得Atan=1,所以A=1,函数的解析式为f(x)=tan(2x+),则f()= tan=.‎ 答案:‎ 二、填空题 ‎13.‎ ‎【解析】直线AB的斜率是kAB=,中点坐标是(3,2).故直线AB的中垂线方程,由得圆心坐标C(2,0),r=|AC|=‎ ‎,故圆的方程为。‎ ‎14.0.254‎ ‎【解析】由于,当x增加1万元时,年饮食支出y增加0.254万元.‎ ‎15.—1‎ ‎【解析】设等差数列的公差为d,解方程组得d=-2,a5=a4+d=-1.‎ ‎16.‎ ‎【解析】函数有零点等价于 即有解. 等价于有解。令,∴。‎ 当时,;当时,.‎ ‎∴当时,取到最大值,∴的取值范围是.‎ 三、解答题 ‎17.解:(I)由正弦定理得,,即 故 ………………6分 ‎ (II)由余弦定理和 由(I)知故 可得 …………12分 ‎18.解:(I)由条件知PDAQ为直角梯形 因为QA⊥平面ABCD,所以平面PDAQ⊥平面ABCD,交线为AD.‎ 又四边形ABCD为正方形,DC⊥AD,所以DC⊥平面PDAQ,可得PQ⊥DC.‎ 在直角梯形PDAQ中可得DQ=PQ=PD,则PQ⊥QD 所以PQ⊥平面DCQ. ………………6分 ‎ (II)设AB=a.‎ 由题设知AQ为棱锥Q—ABCD的高,所以棱锥Q—ABCD的体积 由(I)知PQ为棱锥P—DCQ的高,而PQ=,△DCQ的面积为,‎ 所以棱锥P—DCQ的体积为 故棱锥Q—ABCD的体积与棱锥P—DCQ的体积的比值为1.…………12分 ‎19.解:(I)设第一大块地中的两小块地编号为1,2,第二大块地中的两小块地编号为3,4,‎ 令事件A=“第一大块地都种品种甲”.‎ 从4小块地中任选2小块地种植品种甲的基本事件共6个;‎ ‎(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).‎ 而事件A包含1个基本事件:(1,2).‎ 所以 ………………6分 ‎ (II)品种甲的每公顷产量的样本平均数和样本方差分别为:‎ ‎ ………………8分 品种乙的每公顷产量的样本平均数和样本方差分别为:‎ ‎ ………………10分 由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙.‎ ‎20.解:(I) …………2分 由已知条件得 解得 ………………5分 ‎ (II),由(I)知 设则 而 ………………12分 ‎21.解:(I)因为C1,C2的离心率相同,故依题意可设 设直线,分别与C1,C2的方程联立,求得 ‎ ………………4分 当表示A,B的纵坐标,可知 ‎ ………………6分 ‎ (II)t=0时的l不符合题意.时,BO//AN当且仅当BO的斜率kBO与AN的斜率kAN相等,即 解得 因为 所以当时,不存在直线l,使得BO//AN;‎ 当时,存在直线l使得BO//AN. ………………12分 ‎22.解:‎ ‎ (I)因为EC=ED,所以∠EDC=∠ECD.‎ 因为A,B,C,D四点在同一圆上,所以∠EDC=∠EBA.‎ 故∠ECD=∠EBA,‎ 所以CD//AB. …………5分 ‎ (II)由(I)知,AE=BE,因为EF=FG,故∠EFD=∠EGC 从而∠FED=∠GEC.‎ 连结AF,BG,则△EFA≌△EGB,故∠FAE=∠GBE,‎ 又CD//AB,∠EDC=∠ECD,所以∠FAB=∠GBA.‎ 所以∠AFG+∠GBA=180°.‎ 故A,B,G,F四点共圆 …………10分 ‎23.解:‎ ‎ (I)C1是圆,C2是椭圆.‎ ‎ 当时,射线l与C1,C2交点的直角坐标分别为(1,0),(a,0),因为这两点间的距离为2,所以a=3.‎ ‎ 当时,射线l与C1,C2交点的直角坐标分别为(0,1),(0,b),因为这两点重合,所以b=1.‎ ‎ (II)C1,C2的普通方程分别为 ‎ 当时,射线l与C1交点A1的横坐标为,与C2交点B1的横坐标为 ‎ ‎ 当时,射线l与C1,C2的两个交点A2,B2分别与A1,B1关于x轴对称,因此,‎ 四边形A‎1A2B2B1为梯形.‎ 故四边形A‎1A2B2B1的面积为 …………10分 ‎24.解:‎ ‎ (I)‎ ‎ 当 ‎ 所以 ………………5分 ‎ (II)由(I)可知,‎ ‎ 当的解集为空集;‎ ‎ 当;‎ ‎ 当.‎ ‎ 综上,不等式 …………10分