- 259.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2014年高考一轮复习之电磁感应
一、选择题(本题共10小题,每题4分,共40分.有的小题只有一个选项正确,有的小题有多个选项正确,把正确选项前的字母填在题后的括号内)
1.如图所示,一个半径为L的半圆形硬导体AB以速度v在水平U型框架上向右匀速滑动,匀强磁场的磁感应强度为B,回路电阻为R0,半圆形硬导体AB的电阻为r,其余电阻不计,则半圆形导体AB切割磁感线产生的感应电动势大小及A、B之间的电势差分别为( )
A.BLv B.BπLv
C.2BLv D.2BLv 2BLv
解析:根据E=BLv,感应电动势2BLv,AB间的电势差U=,C项正确.
答案:C
2.某地的地磁场磁感应强度的竖直分量方向向下,大小为4.5×10-5 T.一灵敏电压表连接在当地入海河段的两岸,河宽100 m,该河段涨潮和落潮时有海水(视为导体)流过.设落潮时,海水自西向东流,流速为2 m/s.下列说法正确的是( )
A.河北岸的电势较高 B.河南岸的电势较高
C.电压表记录的电压为9 mV D.电压表记录的电压为5 mV
解析:由E=BLv=(4.5×10-5×100×2)V=9×10-3 V=9
mV,可知电压表记录的电压为9 mV,选项C正确,D错误;从上往下看,画出水流切割磁感线示意图如图所示,据右手定则可知北岸电势高,选项A正确,B错误.
答案:AC
3.在匀强磁场中,有一个接有电容器的单匝导线回路,如图所示,已知C=30 μF,L1=5 cm,L2=8 cm,磁场以5×10-2 T/s的速率增加,则( )
A.电容器上极板带正电,带电荷量为6×10-5 C
B.电容器上极板带负电,带电荷量为6×10-5 C
C.电容器上极板带正电,带电荷量为6×10-9 C
D.电容器上极板带负电,带电荷量为6×10-9 C
解析:电容器两极板间的电势差U等于感应电动势E,由法拉第电磁感应定律,可得E=·L1L2=2×10-4V ,电容器的带电荷量Q=CU=CE=6×10-9C,再由楞次定律可知上极板的电势高,带正电,C项正确.
答案:C
4.如下图所示,正方形线圈abcd位于纸面内,边长为L,匝数为N,线圈内接有阻值为R的电阻,过ab中点和cd中点的连线OO′恰好位于垂直纸面向里的匀强磁场的右边界上,磁场的磁感应强度为B.当线圈绕OO′转过90°时,通过电阻R的电荷量为( )
A. B.
C. D.
解析:初状态时,通过线圈的磁通量为Φ1=,当线圈转过90°时,通过线圈的磁通量为0,由q=可得通过电阻R的电量为.
答案:A
5.如图所示,E为电池,L是电阻可忽略不计、自感系数足够大的线圈,D1、D2是两个规格相同且额定电压足够大的灯泡,S是控制电路的开关.对于这个电路,下列说法正确的是( )
A.刚闭合开关S的瞬间,通过D1、D2的电流大小相等
B.刚闭合开关S的瞬间,通过D1、D2的电流大小不相等
C.闭合开关S待电路达到稳定,D1熄灭,D2比原来更亮
D.闭合开关S待电路达到稳定,再将S断开瞬间,D2立即熄灭,D1闪亮一下再熄灭
解析:由于线圈的电阻可忽略不计、自感系数足够大,在开关闭合的瞬间线圈的阻碍作用很大,线圈中的电流为零,所以通过D1、D2的电流大小相等,A正确,B错误.闭合开关S待电路达到稳定时线圈短路,D1中电流为零,回路电阻减小,D2比原来更亮,C正确.闭合开关S待电路达到稳定,再将S断开瞬间,D2立即熄灭,线圈和D1形成回路,D1闪亮一下再熄灭,故A、C、D正确.
答案:ACD
6.(2012·课标全国理综)如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B0.使该线框从静止开始绕过圆心O、垂直于半圆面的轴以角速度ω
匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率的大小应为( )
A. B.
C. D.
解析:线框转动过程中,等效于长度为半径R的导体棒绕O点转动切割磁感线,=·ω,其产生的感应电动势E=B0·R·=;线框静止不动时,根据法拉第电磁感应定律可知线框产生的感应电动势为E′=·.根据题意有E=E′,可得=,选项C正确.
答案:C
7.(2012·四川理综)半径为a右端开小口的导体圆环和长为2a的导体直杆,单位长度电阻均为R0.圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B.杆在圆环上以速度v平行于直径CD向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O开始,杆的位置由θ确定,如右图所示,则( )
A.θ=0时,杆产生的电动势为 2Bav
B.θ=时,杆产生的电动势为Bav
C.θ=0时,杆受的安培力大小为
D.θ=时,杆受的安培力大小为
解析:θ=0时,杆在CD位置,产生的电动势为E=B·2av=2Bav,通过杆的电流为I==,杆受到的安培力为F=BI·2a=,选项A正确,C错误;θ=时,杆切割的有效长度为a,产生的电动势为E=Bav,电路的总电阻为R=(2π-)aR0+aR0=πaR0+aR0,通过杆的电流为I==,杆受到的安培力为F=BIa=,选项B错误、D正确.
答案:AD
8.(2012·山东理综)如图所示,相距为L的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R,匀强磁场垂直于导轨平面,磁感应强度为B.将质量为m的导体棒由静止释放,当速度达到v时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P,导体棒最终以2v的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g.下列选项正确的是( )
A. P=2mgvsinθ
B. P=3mgvsinθ
C.当导体棒速度达到时加速度大小为sinθ
D.在速度达到2v以后匀速运动的过程中,R上产生的焦耳热等于拉力所做的功
解析:当导体棒以速度v匀速运动时,沿斜面方向有mgsinθ=;当导体棒以2v匀速运动时,沿斜面方向F+mgsinθ=,故F=mgsinθ,此时拉力F的功率P=F×2v=2mgvsinθ,选项A正确,B错误;当导体棒的速度达到时,沿斜面方向mgsinθ-=ma
,解得a=gsinθ,选项C正确;导体棒的速度达到2v以后,拉力与重力的合力做的功等于R上产生的焦耳热,选项D错误.
答案:AC
9.如图所示,在两个沿竖直方向的匀强磁场中,分别放入两个完全一样的水平金属圆盘a和b,它们可以绕竖直轴自由转动,用导线把它们相连.当圆盘a转动时( )
A.圆盘b总是与a沿相同方向转动
B.圆盘b总是与a沿相反方向转动
C.若B1、B2同向,则a、b转向相同
D.若B1、B2反向,则a、b转向相同
解析:当圆盘a转动时,由于切割磁感线而产生感应电流,该电流流入b盘中,在磁场中由于安培力作用b盘会转动,但若不知B1、B2的方向关系,则b盘与a盘的转向关系将无法确定,故A、B错.设B1、B2都向上,a盘逆时针转动时,由右手定则可判电流方向为a→a′→b→b′→a,b盘受力由左手定则可判为顺时针方向,故C错,同理可得D正确.
答案:D
10.如图所示,光滑绝缘水平面上,有一矩形线圈冲入一匀强磁场,线圈全部进入磁场区域时,其动能恰好等于它在磁场外面时的一半,设磁场宽度大于线圈宽度,那么( )
A.线圈恰好在刚离开磁场的地方停下
B.线圈在磁场中某位置停下
C.线圈在未完全离开磁场时即已停下
D.线圈完全离开磁场以后仍能继续运动,不会停下来
解析:线圈冲入匀强磁场时,产生感应电流,线圈受安培力作用做减速运动,动能也减少.同理,线圈冲出匀强磁场时,动能减少,进、出时减少的动能都等于克服安培力做的功.由于进入时的速度大,故感应电流大,安培力大,安培力做的功也多,减少的动能也多,线圈离开磁场过程中,损失动能少于它在磁场外面时动能的一半,因此线圈离开磁场仍继续运动.
答案:D
第Ⅱ卷(非选择题,共60分)
二、填空题(本题共2小题,每题8分,共16分)
11.如图所示,半径为r的金属圆环绕通过直径的轴OO′以角速度ω匀速转动,匀强磁场的磁感应强度为B,以金属环的平面与磁场方向重合时开始计时,求在转动30°角的过程中,环中产生的感应电动势为________.
解析:ΔΦ=Φ2-Φ1=BSsin30°-0=Bπr2.
又Δt===π/(6ω)
所以E===3Bωr2.
答案:3Bωr2
12.一个边长为10 cm的正方形金属线框置于匀强磁场中,线框匝数n=100,线框平面与磁场垂直,电阻为20 Ω.磁感应强度随时间变化的图象如图所示.则在一个周期内线框产生的热量为________ J.
解析:由题图可知,线框中穿过均匀变化的磁场,变化周期T=4 s.根据法拉第电磁感应定律和闭合电路欧姆定律,线框中产生的感应电动势E=nS,
感应电流I== A=5×10-2 A,
在一个周期内产生的热量
Q=I2RT=(5×10-2)2×20×4 J=0.2 J.
答案:0.2
三、计算题(本题共4小题,13、14题各10分,15、16题各12分,共44分,计算时必须有必要的文字说明和解题步骤,有数值计算的要注明单位)
13.轻质细线吊着一质量为m=0.32 kg、边长为L=0.8 m、匝数n=10的正方形线圈,总电阻为r=1 Ω.边长为的正方形磁场区域对称分布在线圈下边的两侧,如图甲所示,磁场方向垂直纸面向里,大小随时间变化如图乙所示,从t=0开始经t0时间细线开始松弛,取g=10 m/s2.求:
(1)在前t0时间内线圈中产生的电动势;
(2)在前t0时间内线圈的电功率;
(3) t0的值.
解析:(1)由法拉第电磁感应定律得
E=n=n××()2=10××()2×0.5 V=0.4 V.
(2)I==0.4 A,P=I2r=0.16 W.
(3)分析线圈受力可知,当细线松弛时有:F安=nBt0I=mg,I=
Bt0==2 T
由图象知:Bt0=1+0.5t0(T),解得t0=2 s.
答案:(1)0.4 V (2)0.16 W (3)2 s
14.(2011·浙江理综)如下图甲所示,在水平面上固定有长为L=2 m、宽为d=1 m的金属“U”型导轨,在“U”型导轨右侧l=0.5 m范围内存在垂直纸面向里的匀强磁场,且磁感应强度随时间变化规律如下图乙所示.在t=0时刻,质量为m=0.1 kg的导体棒以v0=1 m/s的初速度从导轨的左端开始向右运动,导体棒与导轨之间的动摩擦因数为μ=0.1,导轨与导体棒单位长度的电阻均为λ=0.1Ω/m,不计导体棒与导轨之间的接触电阻及地球磁场的影响(取g=10 m/s2).
(1)通过计算分析4 s内导体棒的运动情况;
(2)计算4 s内回路中电流的大小,并判断电流方向;
(3)计算4 s内回路产生的焦耳热.
解析:(1)导体棒先在无磁场区域做匀减速运动,有-μmg=ma vt=v0+at x=v0t+at2
代入数据解得t=1 s,x=0.5 m,导体棒没有进入磁场区域.
导体棒在1 s末已停止运动,以后一直保持静止,离左端位置仍为x=0.5 m.
(2)前2 s磁通量不变,回路电动势和电流分别为
E=0,I=0
后2 s回路产生的电动势为
E==ld=0.1 V
回路的总长度为5 m,因此回路的总电阻为
R=5λ=0.5 Ω
电流为
I==0.2 A
根据楞次定律,在回路中的电流方向是顺时针方向.
(3)前2 s电流为零,后2 s有恒定电流,焦耳热为
Q=I2Rt=0.04 J.
答案:(1)见解析 (2)0.2 A 沿顺时针方向 (3)0.04 J
15.(2012·天津理综)
如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距l=0.5 m,左端接有阻值R=0.3 Ω的电阻.一质量m=0.1 kg,电阻r=0.1 Ω的金属棒MN放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B=0.4 T.棒在水平向右的外力作用下,由静止开始以a=2 m/s2的加速度做匀加速运动,当棒的位移x=9 m时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q1:Q2=2:1.导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:
(1)棒在匀加速运动过程中,通过电阻R的电荷量q;
(2)撤去外力后回路中产生的焦耳热Q2;
(3)外力做的功WF.
解析:(1)设棒匀加速运动的时间为Δt,回路的磁通量变化量为ΔΦ,回路中的平均感应电动势为,由法拉第电磁感应定律得
=①
其中
ΔΦ=Blx②
设回路中的平均电流为,由闭合电路的欧姆定律得
=③
则通过电阻R的电荷量为
q=Δt④
联立①②③④式,代入数据得
q=4.5 C⑤
(2)设撤去外力时棒的速度为v,对棒的匀加速运动过程,由运动学公式得
v2=2ax⑥
设棒在撤去外力后的运动过程中安培力做功为W,由动能定理得
W=0-mv2⑦
撤去外力后回路中产生的焦耳热
Q2=-W⑧
联立⑥⑦⑧式,代入数据得
Q2=1.8 J⑨
(3)由题意知,撤去外力前后回路中产生的焦耳热之比Q1:Q2=2:1,可得
Q1=3.6 J⑩
在棒运动的整个过程中,由功能关系可知
WF=Q1+Q2⑪
由⑨⑩⑪式得
WF=5.4 J⑫
答案:(1)4.5 C (2)1.8 J (3)5.4 J
16.如下图甲所示,不计电阻的平行金属导轨竖直放置,导轨间距为L=1 m,上端接有电阻R=3 Ω,虚线OO′下方是垂直于导轨平面的匀强磁场.现将质量m=0.1 kg、电阻r=1 Ω的金属杆ab从OO′上方某处垂直导轨由静止释放,杆下落过程中始终与导轨保持良好接触,杆下落过程中的v-t图象如下图乙所示.(取g=10 m/s2)求:
(1)磁感应强度B;
(2)杆在磁场中下落0.1 s过程中电阻R产生的热量.
解析:(1)由图象知,杆自由下落0.1 s进入磁场后以v=1.0 m/s做匀速运动.产生的电动势E=BLv
杆中的电流I=
杆所受安培力F安=BIL
由平衡条件得mg=F安
解得B=2 T
(2)电阻R产生的热量Q=I2Rt=0.075 J
答案:(1)2 T (2)0.075 J