• 844.50 KB
  • 2021-05-13 发布

高考全国Ⅰ卷理数试题含详细解析

  • 15页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
绝密★启用前 ‎2018年普通高等学校招生全国统一考试 理科数学 注意事项:‎ ‎ 1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。‎ ‎2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚 ‎3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效 ‎4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。‎ ‎5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。‎ ‎ ‎ 一、选择题 ‎1‎ 设则(   )‎ A. B. C. D.‎ ‎2已知集合 ,则(   )‎ A. B. C. D.‎ ‎3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。为更好地了解该地区农村的经济收入变化情况,统计了该地区系农村建设前后农村的经济收入构成比例。得到如下饼图:‎ 则下面结论中不正确的是(   )‎ A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 ‎4记为等差数列的前项和,若,则(   )‎ A.-12        B.-10        C.10         D.12‎ ‎5设函数,若为奇函数,则曲线在点处的切线方程为(   )‎ A. B.‎ C. D.‎ ‎6 在中,为边上的中线,为的中点,则(   )‎ A. B. C. D.‎ ‎7某圆柱的高为2,底面周长为16,其三视图如下图。圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为(   )‎ A. B. C. D.‎ ‎8 设抛物线的焦点为,过点且斜率为的直线与交于两点,则(  )‎ A.5          B.6          C.7          D.8‎ ‎9 已知函数,,在存在个零点,则的取值范围是(   )‎ A. B. C. D.‎ ‎10下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个车圈构成,三个半圆的直径分别为直角三角形的斜边,直角边.的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ 、Ⅱ 、Ⅲ的概率分别记为,则(   )‎ A. B. C. D.‎ ‎11已知双曲线,为坐标原点,为的右焦点,过的直线与的两条渐近线的交点分别为若为直角三角形,则(   )‎ A. B. C. D.‎ ‎12已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为(   )‎ A. B. C. D.‎ 二、填空题 ‎13若满足约束条件则的最大值为        。‎ ‎14记为数列的前n项的和,若,则        。‎ ‎15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有__________种.(用数字填写答案)‎ ‎16已知函数,则的最小值是        。‎ 三、解答题 ‎17‎ 在平面四边形中,‎ ‎1.求;‎ ‎2.若求 ‎18如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.‎ ‎1. 证明:平面平面;‎ ‎2.求与平面所成角的正弦值 ‎19 设椭圆的右焦点为,过得直线与交于两点,点的坐标为.‎ ‎1.当与轴垂直时,求直线的方程; ‎ ‎2.设为坐标原点,证明:‎ ‎20某工厂的某种产品成箱包装,每箱产品在交付用户前要对产品作检验,如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验。设每件产品为不合格的概率为品(),且各件产品是否为不合格品相互独立 ‎ ‎1.记20件产品中恰有2件不合格品的概率为,求的最大值点 ‎2.现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的  作为的值。已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用 ‎①若不对该箱余下的产品作检验,这一箱的检验费用与赔偿费用的和记为,求;‎ ‎②检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?    ‎ ‎21已知函数 ‎1.讨论的单调性;‎ ‎2.若存在两个极值点,证明:‎ ‎22[选修4—4:坐标系与参数方程]‎ ‎    在直角坐标系中,曲线的方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为    ‎ ‎1.求的直角坐标方程 ‎ ‎2. 若与有且仅有三个公共点,求的方程 ‎ ‎23[选修4—5:不等式选讲]‎ 已知    ‎ ‎1.当时,求不等式的解集 ‎ ‎2.若时,不等式成立,求的取值范围 ‎ 参考答案 ‎ ‎ 一、选择题 答案: C 解析: ,,故选C 答案: B 解析: 由题得=或,故,故选B ‎3.答案:A 解析:设建设前总经济收入为则建设后总经济收入为 对于,建设前种植收入为,建设后种植收入为故借误:‎ 对于,建设前其他收入为,建设后其他收入为,故正确 对于,建设前养殖收入为,建设后养殖收入为,故正确:‎ 对于,建设后,养殖收入占,第三产业收入占,故正确:‎ 答案: B 解析: 由为等差数列,且,故有,即又由,故可得,故,故选B 答案: D 解析: 因为是奇函数,所以,即解得,所以,故切线方程为:,故选D 答案: A 解析: 由是边上的中线,为的中点,故,故选A 答案: B 解析: ‎ 如图,最小路径,故选B 答案: D 解析: 由直线过点且斜率为故可得直线为,联立直线与抛物线,解得或,故可设,则.又由抛物线焦点,故,,所以,故选D 答案: C 解析: 有两个零点等价于与有两个交点,由图可知,当,即时,与有两个交点,故选C 答案: A 解析: 假设,由三角形是直角三角形,故有,即,即有,故区域Ⅰ的面积为,区域Ⅱ的面积为,区域Ⅲ的面积为又由于总区域固定,故·即选A 答案: B 解析: ‎ 在中,‎ 在中,‎ 答案: A 解析: 如图所示平面与平面的所有棱缩成角都相等 故平面,构造平面平面 设,则,‎ 故=‎ 当时 二、填空题 答案: ‎ 解析: 作出约束区域如图所示,‎ 目标函数化为 当直线经过时有最大截距,且此时取得最大值。‎ 故当时取得最大值 答案: ‎ 解析: 由题意,当时,,解得 当时 化简得 故是以为首项,为公比的等比数列,因此 ‎15.答案:16‎ 解析:在人中任选人的选法总共有种;选出的人劝慰男生的选法共有种 故至少有一位女生入选的选法共有种 答案: ‎ 解析: 显然,故是以为周期的函数 又 故当,即时,单调递增 当,即时,单调递减 所以时,取得最小值 不妨令,取代入得 三、解答题 答案: 1.在中,由正弦定理可知:∴∴‎ 由得∵∴ 2.∵,‎ 又由余弦定理知:‎ 解得:∴‎ 答案: 1.证明:∵分别为的中点,四边形为正方形∴∴∵,∴‎ 而:∴平面,而平面,∴平面平面 2.记正方形边长为则:,且由翻折的性质可知:‎ ‎∴过作于连接,由1知:平面平面,平面平面,∴平面,∴即为与平面所成的角.记,则,∴,在中,由勾股定理得:,即,解得∴‎ ‎∴即与平面所成的角的正弦值为 ‎ ‎ 答案: 1.依题意,右焦点,当与轴垂直时,则点的坐标为,所以当时,直线方程为 所以当时,直线方程为 2.①当直线与轴垂直时,两点分别为和根据对称性可知,所以 ‎②当直线不与垂直时,设直线的方程为联立方程组 设,则则 ‎ ‎ 答案: 1.‎ 令,‎ 当时,单调递增 当时,,单调递减 所以,当时,有最大 ‎ 2.①有题意可知 设剩余件产品恰有件是不合格品,则 ‎②若对余下产品进行检查时,则质检费用与赔偿费用之和为元,因为,所以需要检验 答案: 1.‎ 当时,,此时在上单调递减;‎ 当时,令,判别式 当时,此时,,从而在上单调递减 当时,此时,设的两根为,且,利用求根公式得 当时,,从而,在和单调递减 当时,,从而,此时在上单调递增 综上所述,当时,在上单调递减 当时,在和上单调递减,在上单调递增 2.由可知,若有两个极值点,则,且的两根即为 且满足韦达定理,易得,‎ 因,可得,即 若要证,只须证,即证 整理得 构造函数,求导得 因此在上单调递减 从而成立,原式得证 答案: 1.‎ 则,即 所以的直角坐标方程为 2.由题可知圆心坐标为,半径 又曲线方程,关于轴对称,且曲线过圆外定点 ‎∴当曲线与圆有且仅有个交点时,设曲线在轴的右半部分与圆相切于点,‎ 此时,‎ 则,‎ ‎,即直线的方程为 答案: 1.当时,则 ‎∴当时,即 又当时,满足 综上: 2.当时,恒成立 即时有:‎ 即,两边平方化简可得:‎ 又,则成立 函数可看作斜率为的直线,且在处取最大值 则 即的取值范围是