- 128.37 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2014高考数学“拿分题”训练:平面向量与解析几何
在高中数学新课程教材中,学生学习平面向量在前,学习解析几何在后,而且教材中二者知识整合的不多,很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题。用向量法解决解析几何问题思路清晰,过程简洁,有意想不到的神奇效果。著名教育家布鲁纳说过:学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退。这充分揭示方法求变的重要性,如果我们能重视向量的教学,必然能引导学生拓展思路,减轻负担。
一、知识整合
平面向量是高中数学的新增内容,也是新高考的一个亮点。 向量知识、向量观点在数学、物理等学科的很多分支有着广泛的应用,它具有代数形式和几何形式的“双重身份”,能融数形与一体,能与中学数学教学内容的的许多主干知识综合,形成知识交汇点。而在高中数学体系中,解析几何占有着很重要的地位,有些问题用常规方法去解决往往运算比较繁杂,不妨运用向量作形与数的转化,则会大大简化过程。
二、例题解析
例1、(2000年全国高考题)椭圆的焦点为FF,点P为其上的动点,当∠FP F为钝角时,点P横坐标的取值范围是___。
解:F1(-,0)F2(,0),设P(3cos,2sin)
为钝角
∴
=9cos2-5+4sin2=5 cos2-1<0
解得:∴点P横坐标的取值范围是()
点评:解决与角有关的一类问题,总可以从数量积入手。本题中把条件中的角为钝角转化为向量的数量积为负值,通过坐标运算列出不等式,简洁明了。
例2、已知定点A(-1,0)和B(1,0),P是圆(x-3)2+(y-4)2=4上的一动点,求的最大值和最小值。
分析:因为O为AB的中点,所以故可利用向量把问题转化为求向量的最值。
解:设已知圆的圆心为C,由已知可得:
又由中点公式得
P
C
y
x
A
o
B
所以
=
=
=
又因为 点P在圆(x-3)2+(y-4)2=4上,
所以 且
所以
即 故
所以的最大值为100,最小值为20。
点评:有些解几问题虽然没有直接用向量作为已知条件出现,但如果运用向量知识来解决,也会显得自然、简便,而且易入手。
例3、(2003年天津高考题)O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足,,则P的轨迹一定通过△ABC的( )
(A)外心 (B)内心 (C)重心 (D)垂心
分析:因为同向的单位向量,由向量加法的平行四边形则知是与∠ABC的角平分线(射线)同向的一个向量,又,知P点的轨迹是∠ABC的角平分线,从而点P的轨迹一定通过△ABC的内心。
反思:根据本题的结论,我们不难得到求一个角的平分线所在的直线方程的步骤;
(1) 由顶点坐标(含线段端点)或直线方程求得角两边的方向向量;
(2) 求出角平分线的方向向量
(3) 由点斜式或点向式得出角平分线方程。{直线的点向式方程:过P(),其方向向量为,其方程为}
例4、(2003年天津)已知常数,向量,经过原点以
为方向向量的直线与经过定点以为方向向量的直线相交于点,其中.试问:是否存在两个定点,使得为定值,若存在,求出的坐标;若不存在,说明理由.
(本小题主要考查平面向量的概念和计算,求轨迹的方法,椭圆的方程和性质,利用方程判定曲线的性质,曲线与方程的关系等解析几何的基本思想和综合解题能力.)
解:根据题设条件,首先求出点P坐标满足的方程,据此再判断是否存在两定点,使得点P到两定点距离的和为定值.
∵, ∴=(λ,a),=(1,-2λa).
因此,直线OP和AP的方程分别为 和 .
消去参数λ,得点的坐标满足方程.
整理得 ……① 因为所以得:
(i)当时,方程①是圆方程,故不存在合乎题意的定点E和F;
(ii)当时,方程①表示椭圆,焦点和为合乎题意的两个定点;
(iii)当时,方程①也表示椭圆,焦点和为合乎题意的两个定点.
点评:本题以平面向量为载体,考查求轨迹的方法、利用方程判定曲线的性质、曲线与方程的关系等解析几何的基本思想和综合解题能力。去掉平面向量的背景,我们不难看到,本题即为下题:在△OAP中,O(0,0)、A(0,a)为两个定点,另两边OP与AP的斜率分别是,求P的轨迹。
而课本上有一道习题(数学第二册(上)第96页练习题4):
三角形ABC的两个顶点A、B的坐标分别是(-6,0)、(6,0),边AC、BC所在直线的斜率之积等于,求顶点C的轨迹方程。通过本例可见高考题目与课本的密切关系。
例5.(2004年天津卷理22)椭圆的中心是原点O,它的短轴长为,相应于焦点F(c,0)()的准线与x轴相交于点A,|OF|=2|FA|,过点A的直线与椭圆相交于P、Q两点.
(1)求椭圆的方程及离心率;
(2)若,求直线PQ的方程;
(3)设(),过点P且平行于准线的直线与椭圆相交于另一点M,证明
.
分析:本小题主要考查椭圆的标准方程和几何性质,直线方程,平面向量的计算,曲线和方程的关系等解析几何的基本思想方法和综合解题能力.
(1)解:由题意,可设椭圆的方程为.
由已知得解得
所以椭圆的方程为,离心率.
(2)解:由(1)可得A(3,0).
设直线PQ的方程为.由方程组
得
依题意,得.
设,则, ①. ②
由直线PQ的方程得.于是
. ③
∵,∴. ④
由①②③④得,从而.
所以直线PQ的方程为或
(2)证明:.由已知得方程组
注意,解得
因,故
.
而,所以.
三、总结提炼
由于向量具有几何形式和代数形式的“双重身份”,使向量与解析几何之间有着密切联系,而新课程高考则突出了对向量与解析几何结合考查,这就要求我们在平时的解析几何教学与复习中,应抓住时机,有效地渗透向量有关知识,树立应用向量的意识。应充分挖掘课本素材,在教学中从推导有关公式、定理,例题讲解入手,让学生去品位、去领悟,在公式、定理的探索、形成中逐渐体会向量的工具性,逐渐形成应用向量的意识,在教学中还应注重引导学生善于运用一些问题的结论,加以引申,使之成为解题方法,体会向量解题的优越性,在教学中还应注重引导学生善于运用向量方法解题,逐步树立运用向量知识解题的意识。