- 1.18 MB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2011年普通高等学校招生全国统一考试
理科数学(必修+选修II)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页。第Ⅱ卷3至4页。考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
注意事项:
1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
3.第Ⅰ卷共l2小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题
(1)复数,为的共轭复数,则
(A) (B) (C) (D)
(2)函数的反函数为
(A) (B)
(C) (D)
(3)下面四个条件中,使成立的充分而不必要的条件是
(A) (B) (C) (D)
(4)设为等差数列的前项和,若,公差,,则
(A)8 (B)7 (C)6 (D)5
(5)设函数,将的图像向右平移个单位长度后,所得的图像与原图像重合,则的最小值等于
(A) (B) (C) (D)
(6)已知直二面角α− ι−β,点A∈α,AC⊥ι,C为垂足,B∈β,BD⊥ι,D为垂
足.若AB=2,AC=BD=1,则D到平面ABC的距离等于
(A) (B) (C) (D) 1
(7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友
每位朋友1本,则不同的赠送方法共有
(A)4种 (B)10种 (C)18种 (D)20种
(8)曲线y=+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为
(A) (B) (C) (D)1
(9)设是周期为2的奇函数,当0≤x≤1时,=,则=
(A) - (B) (C) (D)
(10)已知抛物线C:的焦点为F,直线与C交于A,B两点.则=
(A) (B) (C) (D)
(11)已知平面α截一球面得圆M,过圆心M且与α成二面角的平面β截该球面得圆N.若该球面的半径为4,圆M的面积为4,则圆N的面积为
(A)7 (B)9 (C)11 (D)13
(12)设向量a,b,c满足= =1,=,=,则的最大值等于
(A)2 (B) (c) (D)1
绝密★启用前
2011年普通高等学校招生全国统一考试
理科数学(必修+选修II)
第Ⅱ卷
注意事项:
1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。请认真核准条形码卜的准考证号、姓名和科目。2第Ⅱ
卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域 内作答,在试题卷上作答无效。
3第Ⅱ卷共l0小题,共90分。
二、填空题:本大题共4小题,每小题5分,共20分把答案填在题中横线上 (注意:在试卷上作答无效)
(13)(1-)20的二项展开式中,x的系数与x9的系数之差为: .y2
(14)已知a∈(,),sinα=,则tan2α=
(15)已知F1、F2分别为双曲线C: - =1的左、右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2∠的平分线.则|AF2| = .
(16)己知点E、F分别在正方体ABCD-A1B2C3D4的棱BB1 、CC1上,且B1E=2EB, CF=2FC1,则面AEF与面ABC所成的二面角的正切值等于 .
三.解答题:本大题共6小题,共70分解答应写出文字说明,证明过程或演算步骤
(17)(本小题满分l0分)(注意:在试题卷上作答无效)
△ABC的内角A、B、C的对边分别为a、b、c.己知A—C=90°,a+c=b,求C.
(18)(本小题满分12分)(注意:在试题卷上作答无效)
根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立
(I)求该地1位车主至少购买甲、乙两种保险中的l种的概率;
(Ⅱ)X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数。求X的期望。
(19)如图,四棱锥中,,,侧面为等边三角形,.
(Ⅰ)证明:;
(Ⅱ)求与平面所成角的大小.
(20)设数列满足且
(Ⅰ)求的通项公式;
(Ⅱ)设
(21)已知O为坐标原点,F为椭圆在y轴正半轴上的焦点,过F且斜率为的直线与C交与A、B两点,点P满足
(Ⅰ)证明:点P在C上;
(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.
(22)(本小题满分12分)(注意:在试题卷上作答无效)
(Ⅰ)设函数,证明:当时,;
(Ⅱ)从编号1到100的100张卡片中每次随即抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互不相同的概率为.证明: