- 737.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2012年普通高等学校招生全国统一考试(重庆卷)
数学(文)试题
一、 选择题:本大题共10小题,每小题5分,共50分 ,在每小题给出的四个选项中,只有一项是符合题目要求的
(1)命题“若p则q”的逆命题是
A. 若q则p B. 若﹃p则﹃q
C. 若﹃q则﹃p D. 若p则﹃q
(2)不等式的解集为
A.(1,+∞) B.(- ∞,-2)
C.(-2,1) D.(- ∞,-2)∪(1,+∞)
(3)设A,B为直线y=x与圆x2+y2=1的两个交点,则|AB|=
A.1 B. C. D.2
(4)(1-3x)5的展开式中x3的系数为
A.-270 B.-90 C.90 D.270
(5)-
A.- B- C. D.
(6)设x∈R,向量a=(x,1),b=(1,-2),且a⊥b,则|a+b|=
A. B. C. D.10
(7)已知a=,b=,c=log32,则a,b,c的大小关系是
(A)a=b<c (B)a=b>c
(C)a<b<c (D)a>b>c
(8)设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图像可能是
(9)设四面体的六条棱的长分别为1,1,1,1,和a,且长为a的棱与长为的棱异面,则a的取值范围是
(A) (B) (C) (D)
(10)设函数f(x)=x²-4x+3,g(x)=3x-2,集合M={x∈R|f(g(x))>0},N={x∈R g(x)g(x)<2},则M∩N为
(A)(1,﹢∞) (B)(0,1) (C)(-1,1) (D)(-∞,1)
二、填空题:本大题共6小题,考试共需作答5小题,每小题5分,共25分。
(11)首项为1,公比为2的等比数列的前4项和S4=__________________
(12)若f(x)=(x+a)(x-4)为偶函数,则实数a=___________________
(13)设△ABC的内角A,B,C的对边分别为a,b,c,且a=1,b=2,,则sinB=________
(14)设P为直线与双曲线(a>0,b>0)左支的交点,F1是左焦点,PF1垂直于x轴,则双曲线的离心率e=___________
(15)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其它三门艺术课各1节,则在课表上的相邻两节文化课之间至少间隔1节艺术课的概率为____________(用数字作答)
三、解答题:本大题共6小题,共75分。解答应写出文字说明、证明过程或演算步骤。
(16)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分。)
已知{an}为等差数列,且a1+a3=8,a2+a4=12.
(I)求{an}的通项公式;
(II)记{an}的前n项和为Sn,若a1,ak,Sk+2成等比数列,求正整数k的值。
(17)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分。)
已知函数f(x)=ax3+bx+c在点x=2处取得极值c-16。
(Ⅰ)求a,b的值;
(Ⅱ)若f(x)有极大值28,求f(x)在[﹣3,3]上的最小值。
(18)(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分。)
甲、乙两人轮流投篮,每人每次投一球。约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球三次时投篮结束。设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响。
(Ⅰ)求乙获胜的概率;
(Ⅱ)求投篮结束时乙只投了2个球的概率。
(19)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分。)
设函数f(x)=Asin()(其中A>0,>0,-π<≤π)在x=处取得最大值2,其图像与x轴的相邻两个交点的距离为。
(Ⅰ)求f(x)的解析式;
(Ⅱ)求函数g(x)=的值域。
20.(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)
如图(20),在直三棱柱ABC-A1B1C1中,AB=4,AC=BC=3,D为AB的中点。
(Ⅰ)求异面直线CC1和AB的距离;
(Ⅱ)若AB1⊥A1C,求二面角A1—CD—B1的平面角的余弦值。
21.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)
如题(21)图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形。
(Ⅰ)求该椭圆的离心率和标准方程;
(Ⅱ)过B1作直线交椭圆于P,Q两点,使PB2⊥QB2,求△PB2Q的面积。
参考答案
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的
(1)A
(2)【答案】:C
【解析】:
【考点定位】本题考查解分式不等式时,利用等价变形转化为整式不等式解.
(3)【答案】:D
【解析】:直线过圆的圆心 则2
【考点定位】本题考查圆的性质,属于基础题.
(4)A
(5)【答案】:C
【解析】:
【考点定位】本题考查三角恒等变化,其关键是利用
(6)【答案】:
(7)【答案】:
【解析】:,
,则
【考点定位】本题考查对数函数运算.
(8)【答案】:C
【解析】:由函数在处取得极小值可知,,则;,则时,时
【考点定位】本题考查函数的图象,函数单调性与导数的关系,属于基础题.
(9)【答案】:A
【解析】:,,,
【考点定位】本题考查棱锥的结构特征,考查空间想象能力,极限思想的应用,是中档题..
(10)【答案】:D
【解析】:由得则或即或
所以或;由得即所以故
二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置。
(11)【答案】:15
【解析】:
【考点定位】本题考查等比数列的前n项和公式
(12)4
(13)【答案】:
(14)
(15)【答案】:
三、解答题:本大题共6小题,共75分。解答应写出文字说明、证明过程或演算步骤。
16.【答案】:(Ⅰ)(Ⅱ)
【解析】::(Ⅰ)设数列 的公差为d,由题意知 解得
所以
(Ⅱ)由(Ⅰ)可得 因 成等比数列,所以 从而 ,即
解得 或(舍去),因此 。
17.【答案】:(Ⅰ)(Ⅱ)
【解析】::(Ⅰ)因 故 由于 在点 处取得极值
故有即 ,化简得解得
(Ⅱ)由(Ⅰ)知 ,
令 ,得当时,故在上为增函数;
当 时, 故在 上为减函数
当 时 ,故在 上为增函数。
由此可知 在 处取得极大值, 在 处取得极小值由题设条件知 得此时,因此 上的最小值为
【考点定位】本题主要考查函数的导数与极值,最值之间的关系,属于导数的应用.(1)先对函数进行求导,根据=0,,求出a,b的值.(1)根据函数=x3-3ax2+2bx在x=1处有极小值-1先求出函数中的参数a,b的值,再令导数等于0,求出极值点,判断极值点左右两侧导数的正负,当左正右负时有极大值,当左负右正时有极小值.再代入原函数求出极大值和极小值.(2)列表比较函数的极值与端点函数值的大小,端点函数值与极大值中最大的为函数的最大值,端点函数值与极小值中最小的为函数的最小值.
18.【答案】:(Ⅰ)(Ⅱ)
独立事件同时发生的概率计算公式知
19.
【答案】:(Ⅰ)(Ⅱ)
因,且
故 的值域为
(20)【答案】:(Ⅰ)(Ⅱ)
【解析】:(Ⅰ)如答(20)图1,因AC=BC, D为AB的中点,故CD AB。又直三棱柱中, 面 ,故 ,所以异面直线 和AB的距离为
(Ⅱ):由故 面 ,从而 ,故 为所求的二面角的平面角。
因是在面上的射影,又已知 由三垂线定理的逆定理得从而,都与互余,因此,所以≌,因此得
从而
所以在中,由余弦定理得
(21)【答案】:(Ⅰ)+=1(Ⅱ)
,
(*)
设 则 是上面方程的两根,因此
又,所以
由 ,知 ,即 ,解得
当 时,方程(*)化为:
故 ,
的面积 当 时,同理可得(或由对称性可得) 的面积 综上所述, 的面积为 。