- 766.00 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
专题突破练14 4.1~4.2组合练
(限时90分钟,满分100分)
一、选择题(共9小题,满分45分)
1.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 ( )
A.1盏 B.3盏 C.5盏 D.9盏
2.(2018辽宁大连二模,理4)设等比数列{an}的前n项和为Sn,S2=-1,S4=-5,则S6=( )
A.-9 B.-21 C.-25 D.-63
3.已知等差数列{an}的公差为2,若a2,a4,a8成等比数列,则{an}的前n项和Sn=( )
A.n(n+1) B.n(n-1)
C. D.
4.(2018河北唐山三模,理6)数列{an}的首项a1=1,对于任意m,n∈N*,有an+m=an+3m,则{an}前5项和S5= ( )
A.121 B.25 C.31 D.35
5.(2018山东潍坊二模,理4)设数列{an}的前n项和为Sn,若Sn=-n2-n,则数列的前40项的和为 ( )
A. B.- C. D.-
6.设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m=( )
A.3 B.4 C.5 D.6
7.(2018吉林长春外国语学校二模,理8)已知数列{an}的前n项和Sn=2n-1,则数列{}的前10项和为( )
A.410-1 B.(210-1)2
C.(410-1) D.(210-1)
8.设等差数列{an}满足3a8=5a15,且a1>0,Sn为其前n项和,则数列{Sn}的最大项为( )
A.S23 B.S24 C.S25 D.S26
9.(2018全国高考必刷模拟一,文12)数列{an}满足a1=,an+1-1=an(an-1)(n∈N*),Sn=+…+,则Sn的整数部分的所有可能值构成的集合是( )
A.{0,1,2} B.{0,1,2,3}
6
C.{1,2} D.{0,2}
二、填空题(共3小题,满分15分)
10.(2018湖南衡阳一模,文15)已知数列{an}的前n项和为Sn,若Sn=2an-2n,则Sn= .
11.设等比数列{an}的前n项和为Sn,若S3,S9,S6成等差数列,且a2+a5=4,则a8的值为 .
12.(2018辽宁抚顺一模,文16)已知数列{an}的前n项和为Sn,且a1=1,an+1=Sn+2,则a9的值为 .
三、解答题(共3个题,分别满分为13分,13分,14分)
13.已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a3=9.
(1)求数列{an}的通项公式;
(2)证明:+…+<1.
14.已知数列{an}的前n项和为Sn,且对任意正整数n,都有3an=2Sn+3成立.
(1)求数列{an}的通项公式;
(2)设bn=log3an,求数列{bn}的前n项和Tn.
6
15.(2018河北保定一模,文17)已知数列{an}满足:2an=an+1+an-1(n≥2,n∈N*),且a1=1,a2=2.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足2anbn+1=an+1bn(n≥1,n∈N*),且b1=1.求数列{bn}的通项公式,并求其前n项和Tn.
参考答案
专题突破练14 4.1~4.2组合练
1.B 解析 设塔的顶层共有x盏灯,则各层的灯数构成一个公比为2的等比数列,由=381,可得x=3,故选B.
2.B 解析 由题意,S2=a1+a2=-1,S4-S2=a3+a4=(a1+a2)q2=-4,q2=4,S6=S2+S4q2=-1+(-5)×4=-21.
3.A 解析 ∵a2,a4,a8成等比数列,∴=a2·a8,即(a1+6)2=(a1+2)(a1+14),解得a1=2.∴Sn=na1+d=2n+n2-n=n2+n=n(n+1).故选A.
4.D 解析 当m=1时,由an+m=an+3m,得an+1-an=3,∴数列{an}是首项a1=1,公差d=3的等差数列,
∴S5=5×1+×5×4×3=35.
5.D 解析 ∵Sn=-n2-n,∴a1=S1=-2.
当n≥2时,an=Sn-Sn-1=-n2-n+(n-1)2+(n-1)=-2n,a1=-2也满足上式,则数列{an}的通项公式为an=-2n,=-,即数列的前40项的和为-+…+=-.
6.C 解析 ∵Sm-1=-2,Sm=0,Sm+1=3,
∴am=Sm-Sm-1=0-(-2)=2,am+1=Sm+1-Sm=3-0=3.
∴d=am+1-am=3-2=1.
6
∵Sm=ma1+×1=0,
∴a1=-.又=a1+m×1=3,∴-+m=3.∴m=5.故选C.
7.C 解析 ∵Sn=2n-1,∴Sn+1=2n+1-1.
∴an+1=Sn+1-Sn=(2n+1-1)-(2n-1)=2n.∵a1=S1=2-1=1,
∴数列{an}的通项公式为an=2n-1,
∴=4n-1,∴所求值为(410-1),故选C.
8.C 解析 设等差数列{an}的公差为d,
∵3a8=5a15,∴3(a1+7d)=5(a1+14d),即2a1+49d=0.
∵a1>0,∴d<0,
∴等差数列{an}单调递减.
∵Sn=na1+d=nd=(n-25)2-d.∴当n=25时,数列{Sn}取得最大值,故选C.
9.A 解析 ∵a1=,an+1-1=an(an-1),
∴an+1-an=(an-1)2>0,∴an+1>an,因此数列{an}单调递增.
∵an+1-1=an(an-1),∴,
∴.
∴Sn=+…++…+=3-.由an+1-1=an(an-1)(n∈N*),得a2-1=,
∴a2=,同理可得a3=,a4=.当n=1时,S1=3-,其整数部分为0,
6
当n=2时,S2=3-=3-=1+,其整数部分为1,
当n=2时,S3=3-=2+,其整数部分为2,
因数列{an}单调递增,当n>4时,0<<1,所以当n≥4时,Sn=3-∈(2,3),所以Sn的整数部分的所有可能值构成的集合是{0,1,2}.
10.n·2n 解析 ∵Sn=2an-2n=2(Sn-Sn-1)-2n,整理得Sn-2Sn-1=2n,等式两边同时除以2n,则=1.
又S1=2a1-2=a1,可得a1=S1=2,∴数列是首项为1,
公差为1的等差数列,所以=n,
所以Sn=n·2n.
11.2 解析 ∵等比数列{an}的前n项和为Sn,S3,S9,S6成等差数列,
且a2+a5=4,
∴
解得a1q=8,q3=-,
∴a8=a1q7=(a1q)(q3)2=8×=2.
12.384 解析 当n≥2时,由an+1=Sn+2,得an=Sn-1+2,两式相减,得an+1-an=an,∴an+1=2an.
当n=2时,a2=S1+2=3,所以数列{an}中,当n≥2时,是以2为公比的等比数列,∴a9=a2×27=3×128=384.
13.(1)解 设等差数列{log2(an-1)}的公差为d.由a1=3,a3=9,得log22+2d=log28,即d=1.
∴log2(an-1)=1+(n-1)×1=n,
即an=2n+1.
(2)证明 ∵,
6
∴+…+
=+…+
==1-<1.
14.解 (1)在3an=2Sn+3中,令n=1,得a1=3.
当n≥2时,3an=2Sn+3,①
3an-1=2Sn-1+3,②
①-②得an=3an-1,
∴数列{an}是以3为首项,3为公比的等比数列,∴an=3n.
(2)由(1)得bn=log3an=n,
数列{bn}的前n项和Tn=1+2+3+…+n=.
15.解 (1)由2an=an+1+an-1(n≥2,n∈N*),得数列{an}为等差数列,且首项为1,公差为a2-a1=1,,所以an=n.
(2)∵2nbn+1=(n+1)bn,
∴(n≥1),
∴数列是以=1为首项,为公比的等比数列,
即,从而bn=,
Tn=+…+Tn=+…+,由①-②,得Tn=1++…+=2-,∴Tn=4-.
6
相关文档
- 2013高中生物浙科版必修1单元检测 2021-05-136页
- 2020版高中数学 第一章 统计 12021-05-134页
- 精华经典版122页高考数学知识点总2021-05-13168页
- 江苏2019普通高中学业水平测试小高2021-05-1311页
- 高中历史高考真题题汇编2021-05-134页
- 全国八省联考2021年湖北省普通高中2021-05-1318页
- 全国八省联考河北省2021年1月普通2021-05-1332页
- 全国八省联考2021年1月重庆市普通2021-05-1328页
- 高考:高中地理23个简答题答题规范2021-05-1324页
- 全国八省联考2021年1月湖北省普通2021-05-1331页