- 355.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2009年普通高等学校招生全国统一考试(宁夏卷)
数学(理工农医类)
第I卷
一, 选择题:(本大题共12题,每小题5分,在每小题给出的四个选项中 ,中有一项是符合题目要求的。
(1) 已知集合,则
(A) (B)
(C) (D)
(2) 复数
(A)0 (B)2 (C)-2i (D)2
(3)对变量x, y 有观测数据理力争(,)(i=1,2,…,10),得散点图1;对变量u ,v 有观测数据(,)(i=1,2,…,10),得散点图2. 由这两个散点图可以判断。
(A)变量x 与y 正相关,u 与v 正相关 (B)变量x 与y 正相关,u 与v 负相关
(C)变量x 与y 负相关,u 与v 正相关 (D)变量x 与y 负相关,u 与v 负相关
(4)双曲线-=1的焦点到渐近线的距离为
(A) (B)2 (C) (D)1
(5)有四个关于三角函数的命题:
:xR, += : x、yR, sin(x-y)=sinx-siny
: x,=sinx : sinx=cosyx+y=
其中假命题的是
(A), (B), (3), (4),
(6)设x,y满足
(A)有最小值2,最大值3 (B)有最小值2,无最大值
(C)有最大值3,无最小值 (D)既无最小值,也无最大值
(7)等比数列的前n项和为,且4,2,成等差数列。若=1,则=
(A)7 (B)8 (3)15 (4)16
(8) 如图,正方体的棱线长为1,线段上有两个动点E,F,且,则下列结论中错误的是
(A)
(B)
(C)三棱锥的体积为定值
(D)异面直线所成的角为定值
(9)已知O,N,P在所在平面内,且,且,则点O,N,P依次是的
(A)重心 外心 垂心 (B)重心 外心 内心
(C)外心 重心 垂心 (D)外心 重心 内心
(注:三角形的三条高线交于一点,此点为三角型的垂心)
(10)如果执行右边的程序框图,输入,那么输出的各个数的合等于
(A)3 (B) 3.5 (C) 4 (D)4.5
(11)一个棱锥的三视图如图,则该棱锥的全面积(单位:c)为
(A)48+12 (B)48+24 (C)36+12 (D)36+24
(12)用min{a,b,c}表示a,b,c三个数中的最小值
设f(x)=min{, x+2,10-x} (x 0),则f(x)的最大值为
(A)4 (B)5 (C)6 (D)7
第II卷
二、填空题;本大题共4小题,每小题5分。
(13)设已知抛物线C的顶点在坐标原点,焦点为F(1,0),直线l与抛物线C相交于A,B两点。若AB的中点为(2,2),则直线的方程为_____________.
(14)已知函数y=sin(x+)(>0, -<)的图像如图所示,则 =________________
(15)7名志愿者中安排6人在周六、周日两天参加社区公益活动。若每天安排3人,则不同的安排方案共有________________种(用数字作答)。
(16)等差数列{}前n项和为。已知+-=0,=38,则m=_______
三、解答题:解答应写出说明文字,证明过程或演算步骤。
(17)(本小题满分12分)
为了测量两山顶M,N间的距离,飞机沿水平方向在A,B两点进行测量,A,B,M,N在同一个铅垂平面内(如示意图),飞机能够测量的数据有俯角和A,B间的距离,请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M,N间的距离的步骤。
(18)(本小题满分12分)
某工厂有工人1000名, 其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人),现用分层抽样方法(按A类、B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数)。
(I)求甲、乙两工人都被抽到的概率,其中甲为A类工人,乙为B类工人;
(II)从A类工人中的抽查结果和从B类工人中的抽插结果分别如下表1和表2.
(i)先确定x,y,再在答题纸上完成下列频率分布直方图。就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)
(ii)分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数,同一组中的数据用该组区间的中点值作代表)
(19)(本小题满分12分)
如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是地面边长的
倍,P为侧棱SD上的点。
(Ⅰ)求证:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,求二面角P-AC-D的大小
(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E,
使得BE∥平面PAC。若存在,求SE:EC的值;
若不存在,试说明理由。
(20)(本小题满分12分)
已知椭圆C的中心为直角坐标系xOy的原点,焦点在s轴上,它的一个顶点到两个焦点的距离分别是7和1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的点,=λ,求点M的轨迹方程,并说明轨迹是什么曲线。
(21)(本小题满分12分)
已知函数
(I) 如,求的单调区间;
(I) 若在单调增加,在单调减少,证明
<6.
请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分。作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑。
(22)本小题满分10分)选修4-1:几何证明选讲
如图,已知的两条角平分线和相交于H,,F在上,
且。
(I) 证明:B,D,H,E四点共圆:
(II) 证明:平分。
(23)(本小题满分10分)选修4-4:坐标系于参数方程
已知曲线 (t为参数),
(24)(本小题满分10分)选修4-5:不等式选讲
如图,O为数轴的原点,A,B,M为数轴上三点,C为线段OM上的动点,设x表示C与原点的距离,y 表示C到A距离4倍与C道B距离的6倍的和.
(1)将y表示成x的函数;
(2)要使y的值不超过70,x 应该在什么范围内取值?