- 5.20 MB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2007年普通高等学校招生全国统一考试
本试卷分第I卷(选择题)和第II(非选择题)两部分,第I卷1至2页,第II卷3至9页,共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.
第I卷(选择题 共40分)
注意事项:
1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.不能答在试卷上.
一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.
1.已知,那么角是( )
A.第一或第二象限角 B.第二或第三象限角
C.第三或第四象限角 D.第一或第四象限角
2.函数的反函数的定义域为( )
A. B. C. D.
3.平面平面的一个充分条件是( )
A.存在一条直线
B.存在一条直线
C.存在两条平行直线
D.存在两条异面直线
4.已知是所在平面内一点,为边中点,且,那么( )
A. B.
C. D.
5.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( )
A.1440种 B.960种 C.720种 D.480种
6.若不等式组表示的平面区域是一个三角形,则的取值范围是( )
A. B. C. D.或
7.如果正数满足,那么( )
A.,且等号成立时的取值唯一
B.,且等号成立时的取值唯一
C.,且等号成立时的取值不唯一
D.,且等号成立时的取值不唯一
8.对于函数①,②,③,判断如下三个命题的真假:
命题甲:是偶函数;
命题乙:在上是减函数,在上是增函数;
命题丙:在上是增函数.
能使命题甲、乙、丙均为真的所有函数的序号是( )
A.①③ B.①② C.③ D.②
第II卷(共110分)
注意事项:
1.用钢笔或圆珠笔将答案直接写在试卷上.
2.答卷前将密封线内的项目填写清楚.
二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.
9. .
10.若数列的前项和,则此数列的通项公式为 ;数列中数值最小的项是第 项.
11.在中,若,,,则 .
12.已知集合,.若,则实数的取值范围是 .
13.2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为,那么的值等于 .
14.已知函数,分别由下表给出
1
2
3
1
3
1
1
2
3
3
2
1
则的值为 ;满足的的值是 .
三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.
15.(本小题共13分)
数列中,,(是常数,),且成公比不为的等比数列.
(I)求的值;
(II)求的通项公式.
16.(本小题共14分)
如图,在中,,斜边.可以通过以直线为轴旋转得到,且二面角是直二面角.动点的斜边上.
(I)求证:平面平面;
(II)当为的中点时,求异面直线与所成角的大小;
(III)求与平面所成角的最大值.
17.(本小题共14分)
矩形的两条对角线相交于点,边所在直线的方程为,点在边所在直线上.
(I)求边所在直线的方程;
(II)求矩形外接圆的方程;
(III)若动圆过点,且与矩形的外接圆外切,求动圆的圆心的轨迹方程.
1
2
3
10
20
30
40
50
参加人数
活动次数
18.(本小题共13分)
某中学号召学生在今年春节期间至少参加一次社会公益活动(以下简称活动).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.
(I)求合唱团学生参加活动的人均次数;
(II)从合唱团中任意选两名学生,求他们参加活动次数恰好相等的概率.
(III)从合唱团中任选两名学生,用表示这两人参加活动次数之差的绝对值,求随机变量的分布列及数学期望.
19.(本小题共13分)
如图,有一块半椭圆形钢板,其半轴长为,短半轴长为,计划将此钢板切割成等腰梯形的形状,下底是半椭圆的短轴,上底的端点在椭圆上,记,梯形面积为.
(I)求面积以为自变量的函数式,并写出其定义域;
(II)求面积的最大值.
20.已知集合,其中,由中的元素构成两个相应的集合:
,.
其中是有序数对,集合和中的元素个数分别为和.
若对于任意的,总有,则称集合具有性质.
(I)检验集合与是否具有性质并对其中具有性质的集合,写出相应的集合和;
(II)对任何具有性质的集合,证明:;
(III)判断和的大小关系,并证明你的结论.
2007年普通高等学校招生全国统一考试
一、选择题(本大题共8小题,每小题5分,共40分)
题号
1
2
3
4
5
6
7
8
答案
C
B
D
A
B
D
A
D
1.∵ ,∴ 当cosθ<0,tanθ>0时,θ∈第三象限;当cosθ>0,tanθ<0时,θ∈第四象限,选C。
2.函数的反函数的定义域为原函数的值域,原函数的值域为,∴ 选B。
3.平面平面的一个充分条件是“存在两条异面直线”,选D。
4.是所在平面内一点,为边中点,∴ ,且,∴ ,即,选A
5. 5名志愿者先排成一排,有种方法,2位老人作一组插入其中,且两位老人有左右顺序,共有=960种不同的排法,选B。
6.不等式组,将前三个不等式画出可行域,三个顶点分别为(0,0),(1,0),(,),第四个不等式,表示的是斜率为-1的直线的下方,∴ 当0